The overall goal of this proposal is to provide core support services for 23 investigators at the University of Washington (UW), who together hold 27 NEI ROI grants. The CORE support services are designed (1) to enhance both quality and quantity of research conducted by UW vision scientists, (2) to facilitate collaborations between investigators with different areas of expertise, (3) to allow established investigators to conduct pilot projects and explore new areas, (4) to facilitate innovation within the UW vision science community. In addition to investigators with NEI R01 supported research programs, the Core Modules are anticipated to facilitate vision research in labs of 14 other investigators whose funding is from non-NEI sources with the long-term goal of helping these investigators obtain NEI ROI grant funding. Among these 14 investigators, the short term goals of the core grant are to assist junior investigators establish their labs and apply for NEI ROI support, and to recruit new investigators to vision research. Collectively, UW vision scientists span a very broad range of areas within vision research ranging from investigations of the roles of molecules in vision to assessment of visual performance in awake behaving human and non-human primates. There is a strong emphasis on translational research within the UW vision scientist group with investigation in all areas being targeted at understanding disease mechanisms and development of treatments and preventions for blinding conditions. The Core Grant will support three modules, each of which is staffed by highly skilled research scientists who are also experienced in vision research. The Cellular Biology Services and Shared Instrumentation Module offers microscopy, image analysis, and tissue preparation and sectioning. The Molecular Biology Services and Shared Instrumentation Module offers routine DNA isolation and genotyping, monoclonal antibody production, and immunocytochemistry. The Systems Biology Services and Shared Instrumentation Module offers technical assist with computer programming, magnetic resonance imaging, electroretinograms, and behavioral tests of visual function.

Public Health Relevance

The Core Grant facilitates and enhances the research programs of NEI funded investigators at the University of Washington. These scientists study the visual system with a strong emphasis on translational research. The research supported by this Core Grant contributes to public health by helping to reduce vision loss.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZEY1)
Program Officer
Liberman, Ellen S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
Kuchenbecker, James A; Greenwald, Scott H; Neitz, Maureen et al. (2014) Cone-isolating ON-OFF electroretinogram for studying chromatic pathways in the retina. J Opt Soc Am A Opt Image Sci Vis 31:A208-13
Puller, Christian; Haverkamp, Silke; Neitz, Maureen et al. (2014) Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones. PLoS One 9:e88963
Schmidt, Brian P; Neitz, Maureen; Neitz, Jay (2014) Neurobiological hypothesis of color appearance and hue perception. J Opt Soc Am A Opt Image Sci Vis 31:A195-207
Foote, Katharina G; Neitz, Maureen; Neitz, Jay (2014) Comparison of the Richmond HRR 4th edition and Farnsworth-Munsell 100 Hue Test for quantitative assessment of tritan color deficiencies. J Opt Soc Am A Opt Image Sci Vis 31:A186-8
Craft, Cheryl M; Huang, Jing; Possin, Daniel E et al. (2014) Primate short-wavelength cones share molecular markers with rods. Adv Exp Med Biol 801:49-56
Doan, Thuy; Vemulakonda, Gurunadh A; Choi, Deana et al. (2014) Retinal neovascularization and endogenous fungal endophthalmitis in intravenous drug users. Ophthalmology 121:1847-8.e2
Dacey, Dennis M; Crook, Joanna D; Packer, Orin S (2014) Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis Neurosci 31:139-51
Fetsch, Christopher R; Kiani, Roozbeh; Newsome, William T et al. (2014) Effects of cortical microstimulation on confidence in a perceptual decision. Neuron 83:797-804
Crook, Joanna D; Packer, Orin S; Dacey, Dennis M (2014) A synaptic signature for ON- and OFF-center parasol ganglion cells of the primate retina. Vis Neurosci 31:57-84
Kosai, Yoshito; El-Shamayleh, Yasmine; Fyall, Amber M et al. (2014) The role of visual area V4 in the discrimination of partially occluded shapes. J Neurosci 34:8570-84

Showing the most recent 10 out of 348 publications