The eye and vision research group at the Medical College of Wisconsin requests continuing support for its Core program. Thirteen Core investigators work on many tissues of the eye and on the visual system, with areas of research ranging from molecular mediators of oxidative stress to imaging of the normal and diseased human retina. Over the nearly 35 years of Core support, the Core Modules have been continuously updated so that they efficiently and equitably serve the needs of the group as its composition and research interests have evolved. In addition to helping support individual research, the Core program also brings together investigators with diverse skills stimulating collaboration on research questions of common interest. With rapid changes in technology and an increasing expectation for interdisciplinary research, shared resources and a mechanism to share new skills have become essential for continued research success. The goal of the Core program is therefore to enhance the independent and collaborative investigations of Core participants by providing both economical infrastructural support for services that cannot be readily supported by individuals, and access to current techniques. The latter is accomplished by knowledgeable. Module directors, experienced staff, continuously upgraded instrumentation, and Core Modules that are designed to work synergistically with one another and with institutional research resources. Support is requested for four updated Modules: Biochemistry-Molecular Biology Module, Cell Culture Module, Morphology &Microscopic Imaging Module, and a significantly redesigned Engineering &Translational Imaging Module that stresses development of novel imaging technologies. Past success of the research group can be partly attributed to the availability of Core-supported Modules. Continued Core support is critical to enhancing the quality of research and to maintaining the cohesiveness and productivity of Medical College eye and vision researchers.

Public Health Relevance

Research supported by the Modules of this Core program has broad relevance for understanding the basic structure, function and development of the cornea, lens and retina. Other supported research addresses the underlying causes and the manifestations of eye diseases especially those affecting the aging retina, including glaucoma and age-related macular degeneration.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY001931-37
Application #
8502500
Study Section
Special Emphasis Panel (ZEY1-VSN (10))
Program Officer
Liberman, Ellen S
Project Start
1997-04-01
Project End
2017-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
37
Fiscal Year
2013
Total Cost
$597,955
Indirect Cost
$207,135
Name
Medical College of Wisconsin
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Kalitzeos, Angelos; Samra, Ranjit; Kasilian, Melissa et al. (2017) CELLULAR IMAGING OF THE TAPETAL-LIKE REFLEX IN CARRIERS OF RPGR-ASSOCIATED RETINOPATHY. Retina :
Baghaie, Ahmadreza; Yu, Zeyun; D'Souza, Roshan M (2017) Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution? Med Image Anal 37:129-145
Lewis, Tylor R; Kundinger, Sean R; Pavlovich, Amira L et al. (2017) Cos2/Kif7 and Osm-3/Kif17 regulate onset of outer segment development in zebrafish photoreceptors through distinct mechanisms. Dev Biol 425:176-190
Vogel, Ryan N; Langlo, Christopher S; Scoles, Drew et al. (2017) High-Resolution Imaging of Intraretinal Structures in Active and Resolved Central Serous Chorioretinopathy. Invest Ophthalmol Vis Sci 58:42-49
Weh, Eric; Takeuchi, Hideyuki; Muheisen, Sanaa et al. (2017) Functional characterization of zebrafish orthologs of the human Beta 3-Glucosyltransferase B3GLCT gene mutated in Peters Plus Syndrome. PLoS One 12:e0184903
Cunefare, David; Fang, Leyuan; Cooper, Robert F et al. (2017) Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks. Sci Rep 7:6620
Mainali, Laxman; Raguz, Marija; O'Brien, William J et al. (2017) Changes in the Properties and Organization of Human Lens Lipid Membranes Occurring with Age. Curr Eye Res 42:721-731
Protas, Meredith E; Weh, Eric; Footz, Tim et al. (2017) Mutations of conserved non-coding elements of PITX2 in patients with ocular dysgenesis and developmental glaucoma. Hum Mol Genet 26:3630-3638
Tanna, Preena; Kasilian, Melissa; Strauss, Rupert et al. (2017) Reliability and Repeatability of Cone Density Measurements in Patients With Stargardt Disease and RPGR-Associated Retinopathy. Invest Ophthalmol Vis Sci 58:3608-3615
Salmon, Alexander E; Cooper, Robert F; Langlo, Christopher S et al. (2017) An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy. Transl Vis Sci Technol 6:9

Showing the most recent 10 out of 486 publications