The goals of the Morphology &Microscopic Imaging Module are to make available to vision researchers the instruments and expertise required (1) to perform microscopic analyses of ocular specimens, subcellular fractions, or cultured cells, and (2) to generate images of microscopic preparations for analysis, publication, presentation and display. The heart of the Module is a centralized facility for basic microscopy where tissues are processed and blocks are sectioned. This is essential for our group since virtually all our lab scientists must examine cell or tissue structure for some aspects of their work, but individual investigators cannot justify or support a fully-equipped microscopy lab -- or the ongoing salaries of skilled microscopy technicians. In addition to supporting tissue processing, a key service of the Module is to facilitate access to institutional centers for electron microscopy and confocal imaging. This latter activity is in keeping with the overall strategy for our Core program emphasized in this budget cycle: to use our Modules to help investigators take advantage of institutional research resources thereby enhancing productivity by providing access to costly instruments that could not be individually supported while integrating our Core vision group with the broader research community on campus.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY001931-37
Application #
8502506
Study Section
Special Emphasis Panel (ZEY1-VSN)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
37
Fiscal Year
2013
Total Cost
$98,896
Indirect Cost
$34,258
Name
Medical College of Wisconsin
Department
Type
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Land, Megan E; Cooper, Robert F; Young, Jonathon et al. (2014) Cone structure in subjects with known genetic relative risk for AMD. Optom Vis Sci 91:939-49
Dubow, Michael; Pinhas, Alexander; Shah, Nishit et al. (2014) Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci 55:1299-309
Wilk, Melissa A; McAllister, John T; Cooper, Robert F et al. (2014) Relationship between foveal cone specialization and pit morphology in albinism. Invest Ophthalmol Vis Sci 55:4186-98
Flatter, John A; Cooper, Robert F; Dubow, Michael J et al. (2014) Outer retinal structure after closed-globe blunt ocular trauma. Retina 34:2133-46
Dubis, Adam M; Cooper, Robert F; Aboshiha, Jonathan et al. (2014) Genotype-dependent variability in residual cone structure in achromatopsia: toward developing metrics for assessing cone health. Invest Ophthalmol Vis Sci 55:7303-11
Langlo, Christopher S; Flatter, John A; Dubra, Alfredo et al. (2014) A lensing effect of inner retinal cysts on images of the photoreceptor mosaic. Retina 34:421-2
Sulai, Yusufu N; Scoles, Drew; Harvey, Zachary et al. (2014) Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope. J Opt Soc Am A Opt Image Sci Vis 31:569-79
Scoles, Drew; Higgins, Brian P; Cooper, Robert F et al. (2014) Microscopic inner retinal hyper-reflective phenotypes in retinal and neurologic disease. Invest Ophthalmol Vis Sci 55:4015-29
Scoles, Drew; Sulai, Yusufu N; Langlo, Christopher S et al. (2014) In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci 55:4244-51
Zareba, Mariusz; Skumatz, Christine M B; Sarna, Tadeusz J et al. (2014) Photic injury to cultured RPE varies among individual cells in proportion to their endogenous lipofuscin content as modulated by their melanosome content. Invest Ophthalmol Vis Sci 55:4982-90

Showing the most recent 10 out of 379 publications