III. COMPUTER/IT RESOURCE CORE Research Plan of Computer/IT Resource Core Computer technology now permeates every facet of vision research. Computers are used by all scientists for preparing manuscripts and lectures, communicating with colleagues, ordering supplies, searching the Internet, and reading the literature. In addition to these routine tasks, they are also vital for acquisition, storage, and analysis of scientific data. In some laboratories, computers are required to actually carry out experiments, especially those that require presentation of visual stimuli and recording of neuronal responses from the retina or brain. In recent years, experimental rigs that once relied on complex electronic circuitry have evolved to carry out the same hardware functions using computers equipped with specialized software. This shift in instrumentation means that a computer specialist has taken over many tasks that once were the job of an electronics shop. Every investigator has some degree of familiarity with computers, often gained through painful trial and error experience. However, the field of computer technology continues to advance rapidly, and most scientists cannot keep up. In fact, it is difficult simply to maintain adequate laboratory computer systems, as equipment becomes obsolete and new software is introduced. Many scientists find themselves unsure what new computer equipment they need, and how they can design and apply computer systems to meet their needs most efficiently. Sometimes the solution to a computer problem is quite straightforward, but documentation is inadequate, and hours can be wasted dealing with equipment incompatibility, software bugs, or missing components. The worst scenario is a laboratory that does not realize that it needs a new computer backup system until a critical collection of data is lost. Most scientists prefer to spend their time and energy on science, not dealing with computer problems, but few laboratories can afford the luxury of hiring a computer specialist, nor require one full-time. The Computer/IT Core has been immensely successful over the past decade because it has provided all vision laboratories with a highly skilled computer programmer for every aspect of basic computer services. Indeed, since the Core's inception, its work log has documented that over 100 different users ~ from graduate students to post-doctoral fellows to principal investigators ~ have come to the Computer/IT Core for help. The Computer/IT Core is available for the simplest of problems (""""""""my printer won't work"""""""") to the most sophisticated challenges, such as writing custom programs to run vision experiments. It is built around a single, highly experienced computer specialist who functions as a jack of all trades, while at the same time providing sophisticated support for specialized applications. This includes a spectrum of services, from software and hardware installation, troubleshooting, automatic data backup, creation of web-based lab databases, to writing of custom programs for data collection and analysis. The vision science community at UCSF shares a strong consensus that dedicated IT support constitutes an exam pie of crucial core support.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
2P30EY002162-36A1
Application #
8884981
Study Section
Special Emphasis Panel (ZEY1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
36
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Lu, Jianmin; Luo, Lingyu; Huang, Deqiang et al. (2018) Photoreceptor Protection by Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF). eNeuro 5:
Lamy, Ricardo; Chan, Elliot; Lee, On-Tat et al. (2018) 880 kHz ultrasound treatment for drug delivery to the vitreous humor. Am J Transl Res 10:3162-3170
Ahn, Yoomin; Lamy, Ricardo; Darling, Cynthia L et al. (2018) Photochemical crosslinking of caries-affected dentin combined with total- or self-etch systems. Am J Transl Res 10:2990-2995
Branham, Kari; Guru, Aditya A; Kozak, Igor et al. (2018) Identification of Novel Deletions as the Underlying Cause of Retinal Degeneration in Two Pedigrees. Adv Exp Med Biol 1074:229-236
Ramirez, David A; Porco, Travis C; Lietman, Thomas M et al. (2018) Ocular Injury in United States Emergency Departments: Seasonality and Annual Trends Estimated from a Nationally Representative Dataset. Am J Ophthalmol 191:149-155
Hirabayashi, Kristin E; Moore, Anthony T; Mendelsohn, Bryce A et al. (2018) Congenital sodium diarrhea and chorioretinal coloboma with optic disc coloboma in a patient with biallelic SPINT2 mutations, including p.(Tyr163Cys). Am J Med Genet A 176:997-1000
Alvarado, Jorge A; Srivastava, Vinita; Sun, Yang (2018) Intraluminal Deposits Found in Glaucoma Tube Shunts Via Anterior Segment Ocular Coherence Tomography. J Glaucoma 27:e68-e71
Lee, Jun Hui; Sanchez, Lucia Rivera; Porco, Travis et al. (2018) Correlation of Corneal and Scleral Pneumatonometry in Pediatric Patients. Ophthalmology 125:1209-1214
Narasimhan, Vinayak; Siddique, Radwanul Hasan; Lee, Jeong Oen et al. (2018) Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices. Nat Nanotechnol 13:512-519
Economides, John R; Rapone, Brittany C; Adams, Daniel L et al. (2018) Normal Topography and Binocularity of the Superior Colliculus in Strabismus. J Neurosci 38:173-182

Showing the most recent 10 out of 581 publications