The vision science community at the University of California, Berkeley has a long and distinguished history, having contributed many seminal discoveries in the fields of visual system development, physiology, psychophysics, and pathology. DC Berkeley vision scientists approach problems from many academic disciplines, working to increase our understanding of vision at many different levels. Our group consists of over 20 investigators - ranging in expertise and interest from molecular mechanisms of photo transduction to human visual function. In this proposal, we request a continuation of support for our CORE grant to ensure further success in vision research through shared resources and services. In addition, we plan to promote the use of new technologies among our vision researchers. This proposal seeks funding for four modules which will support current faculty and attract new faculty to investigate the visual system. The modules are: (1) Gene Delivery (Xiaohua Gong and John Flannery, co-directors), designed to provide molecular biology expertise and support in the use of viral vectors and nanoparticles for delivering genes into tissues of the visual system and for creation of transgenic animal models of ocular disease. (2) Instrumentation (Clifton Schor, director), to support the design and construction of novel, custom instruments that are unavailable commercially;(3) Optical Imaging (Maria Feller, director), which will apply and develop advanced imaging methods for vision research - facilitating the use of shared-access microscopes on the Berkeley Campus and assisting in customizing microscopes in the labs of participating investigators. (4) Software Development (Jack Gallant, director), which will provide custom software solutions for shared use by visual system investigators, primarily those using psychophysical and physiological methods. Vision Science is vigorous and growing at UC Berkeley, with 7 new investigators hired in the past 5 years, and 3-5 additional hires planned in the next 5 years. The UC Berkeley Department of Cell and Molecular Biology, the Helen Wills Neuroscience Institute, and the School of Optometry have made major commitments to support expansion of vision research by providing new faculty positions, additional space, and generous start-up funds. As a demonstration of its firm commitment to vision research in general and the CORE facilities in particular, these administrative groups and the University have committed to collectively provide a total of $550,000 in matching funds to support for the Vision Science CORE. The research activities supported by the CORE are critical to advancing our understanding of the basic mechanisms of vision, and remain essential for our long-term goal of understanding, treating, and ultimately curing visual disorders.

National Institute of Health (NIH)
National Eye Institute (NEI)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZEY1-VSN (04))
Program Officer
Liberman, Ellen S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Berkeley
Schools of Arts and Sciences
United States
Zip Code
Pégard, Nicolas C; Mardinly, Alan R; Oldenburg, Ian Antón et al. (2017) Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nat Commun 8:1228
Gratton, Caterina; Yousef, Sahar; Aarts, Esther et al. (2017) Cholinergic, But Not Dopaminergic or Noradrenergic, Enhancement Sharpens Visual Spatial Perception in Humans. J Neurosci 37:4405-4415
Harewood Smith, Adeola N; Challa, Jnana Aditya; Silver, Michael A (2017) Neither Cholinergic Nor Dopaminergic Enhancement Improve Spatial Working Memory Precision in Humans. Front Neural Circuits 11:94
Freeman, Ralph D (2017) 2015 Charles F. Prentice Medal Award Lecture: Neural Organization of Binocular Vision. Optom Vis Sci 94:931-938
Vlasits, Anna L; Morrie, Ryan D; Tran-Van-Minh, Alexandra et al. (2016) A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina. Neuron 89:1317-1330
Arroyo, David A; Kirkby, Lowry A; Feller, Marla B (2016) Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells. J Neurosci 36:6892-905
Tochitsky, Ivan; Helft, Zachary; Meseguer, Victor et al. (2016) How Azobenzene Photoswitches Restore Visual Responses to the Blind Retina. Neuron 92:100-113
McNamara, Nancy A; Ge, Shaokui; Lee, Salena M et al. (2016) Reduced Levels of Tear Lacritin Are Associated With Corneal Neuropathy in Patients With the Ocular Component of Sjögren's Syndrome. Invest Ophthalmol Vis Sci 57:5237-5243
Metlapally, Sangeetha; Tong, Jianliang L; Tahir, Humza J et al. (2016) Potential role for microfluctuations as a temporal directional cue to accommodation. J Vis 16:19
Denison, Rachel N; Sheynin, Jacob; Silver, Michael A (2016) Perceptual suppression of predicted natural images. J Vis 16:6

Showing the most recent 10 out of 171 publications