Purpose: Microscopic Imaging Module Vision scientists have used optical imaging to assay function at a variety of length scales - from subcellular processes to collections of cell organized into networks. With the advent of new fluorescent probes and imaging technologies, the possibilities of both measuring and manipulating cells and circuit function are more powerful than ever. Two notable breakthroughs in the past few years have revolutionized the ability of vision scientists to manipulate and probe excitable cells in intact tissue. First, the development of two-photon microscopy allows for the stimulation of fluorescent probes deep in tissue with a minimum amount of phototoxicity. Second, ion channels have been engineered to open and close in response to light, allowing for spatially localized stimulation and/or silencing of individual cells with millisecond time resolution. The vision science community at UC Berkeley is unique in that several of its members have been at the forefront of developing and utilizing these and other new optical technologies that are revolutionizing vision research. UC Berkeley is also fortunate in having several advanced microscopy systems on campus. In particular, the Molecular Imaging Center (MIC) in the LSA building has five confocal/2-photon imaging systems, a spinning disk confocal system with a spatial-light-modulator used for optical excitation, and soon-to-be installed PALM microscope for super-resolution imaging, all designated for shared use

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
2P30EY003176-31
Application #
8685380
Study Section
Special Emphasis Panel (ZEY1-VSN (01))
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
31
Fiscal Year
2013
Total Cost
$138,424
Indirect Cost
$49,974
Name
University of California Berkeley
Department
Type
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Tiriac, Alexandre; Smith, Benjamin E; Feller, Marla B (2018) Light Prior to Eye Opening Promotes Retinal Waves and Eye-Specific Segregation. Neuron 100:1059-1065.e4
Smith, Benjamin; Li, Jianfang; Metruccio, Matteo et al. (2018) Quantification of Bacterial Twitching Motility in Dense Colonies Using Transmitted Light Microscopy and Computational Image Analysis. Bio Protoc 8:
Gayet-Primo, Jacqueline; Yaeger, Daniel B; Khanjian, Roupen A et al. (2018) Heteromeric KV2/KV8.2 Channels Mediate Delayed Rectifier Potassium Currents in Primate Photoreceptors. J Neurosci 38:3414-3427
Piazza, Elise A; Denison, Rachel N; Silver, Michael A (2018) Recent cross-modal statistical learning influences visual perceptual selection. J Vis 18:1
Schmidt, Brian P; Sabesan, Ramkumar; Tuten, William S et al. (2018) Sensations from a single M-cone depend on the activity of surrounding S-cones. Sci Rep 8:8561
Mardinly, Alan R; Oldenburg, Ian Antón; Pégard, Nicolas C et al. (2018) Precise multimodal optical control of neural ensemble activity. Nat Neurosci 21:881-893
Wu, Yvonne T; Truong, Tan N; Tam, Connie et al. (2018) Impact of topical corticosteroid pretreatment on susceptibility of the injured murine cornea to Pseudomonas aeruginosa colonization and infection. Exp Eye Res 179:1-7
Agaoglu, Mehmet N; Sheehy, Christy K; Tiruveedhula, Pavan et al. (2018) Suboptimal eye movements for seeing fine details. J Vis 18:8
Morrie, Ryan D; Feller, Marla B (2018) A Dense Starburst Plexus Is Critical for Generating Direction Selectivity. Curr Biol 28:1204-1212.e5
Gao, Yuan; Su, John; Zhang, Yibing et al. (2018) Dietary DHA amplifies LXA4 circuits in tissues and lymph node PMN and is protective in immune-driven dry eye disease. Mucosal Immunol 11:1674-1683

Showing the most recent 10 out of 183 publications