Module Use and Impact The Functional Assessment Module is a resource and service Module providing access to state-of-the-art instrumentation and expertise for the assessment of ocular structure and function in living rodents. Prior to the establishment of this Module, most investigators who wished to evaluate retinal structure or function in small animals had very limited options and relied on terminal experiments performed in individual laboratories. The Department of Ophthalmology and Visual Sciences had a small collection of shared instruments available for use and investigators had access to ERG analysis via collaboration with Dr. Heckenlively or Dr. Khan when their time allowed. Within the past several months, the Functional Assessment Module has greatly increased the range of measurements possible through the purchase of the Micron III, SDOCT, pupillometer, and the optokinetic device. The current function of this Module is to provide investigators and members of their group access to the use of this equipment. In the next funding cycle, staff will be added to the Module to provide training on the use of the equipment and assist investigators with retinal imaging (OCT and Micron III) and visual function tests (ERG, pupillometry, optokinetics). Module staff will 1) perform retinal imaging in anesthetized rodents using the Micron III to assess retinal permeability and provide images to investigators for quantitative analysis (support for image analysis is provided by the Morphology and Imaging Module) and to observe fluorescently labeled proteins or cells;2) perform retinal imaging and analysis by SDOCT to provide retinal microstructure details including retinal layer thickness;3) provide assistance with the measurement and analysis of pupillary responses to specific light stimuli to assess retinal function;4) assist with optokinetic analysis, the measurement of visual acuity and contrast sensitivity by recording the optokinetic reflex or tracking response to a rotating visual stimulus displayed on LCD panels;and 5) perform measurement and analysis of photopic and scotopic ERGs and photopigment regeneration kinetics.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
2P30EY007003-26
Application #
8434326
Study Section
Special Emphasis Panel (ZEY1-VSN (10))
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
26
Fiscal Year
2012
Total Cost
$32,447
Indirect Cost
$11,581
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Kady, Nermin M; Liu, Xuwen; Lydic, Todd A et al. (2018) ELOVL4-Mediated Production of Very Long-Chain Ceramides Stabilizes Tight Junctions and Prevents Diabetes-Induced Retinal Vascular Permeability. Diabetes 67:769-781
Ruebsam, Anne; Dulle, Jennifer E; Myers, Angela M et al. (2018) A specific phosphorylation regulates the protective role of ?A-crystallin in diabetes. JCI Insight 3:
Ramos, Carla J; Lin, Chengmao; Liu, Xuwen et al. (2018) The EPAC-Rap1 pathway prevents and reverses cytokine-induced retinal vascular permeability. J Biol Chem 293:717-730
Tian, Chao; Zhang, Wei; Nguyen, Van Phuc et al. (2018) Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes. J Vis Exp :
Fernando, Roshini; Grisolia, Ana Beatriz Diniz; Lu, Yan et al. (2018) Slit2 Modulates the Inflammatory Phenotype of Orbit-Infiltrating Fibrocytes in Graves' Disease. J Immunol 200:3942-3949
Zhang, Haonan; Xie, Xinyi; Li, Jia et al. (2018) Removal of choroidal vasculature using concurrently applied ultrasound bursts and nanosecond laser pulses. Sci Rep 8:12848
Kiang, Lee; Ross, Bing X; Yao, Jingyu et al. (2018) Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Invest Ophthalmol Vis Sci 59:3767-3778
Saera-Vila, Alfonso; Louie, Ke'ale W; Sha, Cuilee et al. (2018) Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors. PLoS One 13:e0192214
Lu, Yan; Atkins, Stephen J; Fernando, Roshini et al. (2018) CD34- Orbital Fibroblasts From Patients With Thyroid-Associated Ophthalmopathy Modulate TNF-? Expression in CD34+ Fibroblasts and Fibrocytes. Invest Ophthalmol Vis Sci 59:2615-2622
Bian, Zong-Mei; Field, Matthew G; Elner, Susan G et al. (2018) Distinct CD40L receptors mediate inflammasome activation and secretion of IL-1? and MCP-1 in cultured human retinal pigment epithelial cells. Exp Eye Res 170:29-39

Showing the most recent 10 out of 214 publications