The Vanderbilt Vision Research Center (VVRC) spanning the College of Arts &Science, Peabody College of Education, School of Engineering and School of Medicine requests continued support for five modules. (1) The Animal Care Module provides specialized enrichment, surgical support and veterinary care of nonhuman primates and other large animals and murine electroretinogram phenotyping. (2) The Computer Module provides hardware installation and maintenance, software development for visual displays and real-time data acquisition and analysis, webpage maintenance and production of illustrations for journals, posters and web pages. (3) The Image Processing Module aids acquisition and analysis of functional brain imaging, optical imaging, confocal and standard microscopy and other imaging data. (4) The Gene &Protein Analysis Module provides timely and economical access to gene microarray, protein mass spectrometry and histopathology services. (5) The Shop Module repairs, designs and fabricates specialized optical, mechanical and electronic instruments. Administrative support is included to ensure continued smooth and stable operation of the VVRC research and training missions. Modules are directed by investigators with NEI funding, have talented and experienced staff and provide services that are otherwise not available or would be prohibitively expensive or slow. During the last grant period, each module was used moderately or extensively by more than three investigators. VVRC investigators produced several hundred publications that made fundamental contributions to basic and clinical visual science. This Core grant has increased collaborations between basic and clinical vision researchers across the Vanderbilt campus and with other institutions. The Core grant has improved our ability to recruit world-class vision researchers resulting in extensive NEI-sponsored research at Vanderbilt. The high level of performance of VVRC investigators, which depends on renewed Core grant support, synergizes with campus-wide initiatives in biomedical research and training at Vanderbilt.

Public Health Relevance

The research facilitated by this Core grant seeks to improve our understanding of the eye and visual system in normal and diseased states. This knowledge will be used to improve the diagnosis and treatment of visual impairments.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY008126-24
Application #
8264770
Study Section
Special Emphasis Panel (ZEY1-VSN (08))
Program Officer
Liberman, Ellen S
Project Start
1997-04-01
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
24
Fiscal Year
2012
Total Cost
$779,997
Indirect Cost
$279,999
Name
Vanderbilt University Medical Center
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Bolus, W Reid; Peterson, Kristin R; Hubler, Merla J et al. (2018) Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab 8:86-95
Servant, Mathieu; Cassey, Peter; Woodman, Geoffrey F et al. (2018) Neural bases of automaticity. J Exp Psychol Learn Mem Cogn 44:440-464
West, Kathryn L; Kelm, Nathaniel D; Carson, Robert P et al. (2018) Myelin volume fraction imaging with MRI. Neuroimage 182:511-521
Rohrbough, Jeffrey; Nguyen, Hong-Ngan; Lamb, Fred S (2018) Modulation of ClC-3 gating and proton/anion exchange by internal and external protons and the anion selectivity filter. J Physiol 596:4091-4119
Schlegel, Cameron; Lapierre, Lynne A; Weis, Victoria G et al. (2018) Reversible deficits in apical transporter trafficking associated with deficiency in diacylglycerol acyltransferase. Traffic 19:879-892
Fischer, Rachel A; Zhang, Yuchen; Risner, Michael L et al. (2018) Impact of Graphene on the Efficacy of Neuron Culture Substrates. Adv Healthc Mater 7:e1701290
Cooke, Allison L; Morris, Jamie; Melchior, John T et al. (2018) A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. J Lipid Res 59:1244-1255
Funkhouser-Jones, Lisa J; van Opstal, Edward J; Sharma, Ananya et al. (2018) The Maternal Effect Gene Wds Controls Wolbachia Titer in Nasonia. Curr Biol 28:1692-1702.e6
Tan, Bingyao; Gurdita, Akshay; Choh, Vivian et al. (2018) Morphological and functional changes in the rat retina associated with 2 months of intermittent moderate intraocular pressure elevation. Sci Rep 8:7727
Cosman, Joshua D; Lowe, Kaleb A; Zinke, Wolf et al. (2018) Prefrontal Control of Visual Distraction. Curr Biol 28:1330

Showing the most recent 10 out of 847 publications