Genomic technologies have broadly impacted vision science and have a critical role in most of the research programs carried out at Mass Eye and Ear. The Genomics core provides access to state-of-the-art genomic resources at low cost. Direct access to the Genomics core resources and expertise makes it possible for investigators to efficiently obtain high-quality data and eliminates the long queues for services such as next-generation sequencing frequently experienced at off-site centers. Importantly, the expert Genomics core personnel can help investigators plan appropriate experiments and assist with analyses (including troubleshooting)- services that would not be readily available elsewhere. The efficient timeline for data acquisition increases the overall productivity of the core investigators as well as improves the quality of the research. Genomic data is an important feature of most of the MEEI research programs and is especially important for the translational studies. The Genomics core personnel are experts in the genetics and genomics of eye disease, creating opportunities for collaboration among investigators using this resource. Overall direct access to Genomics core personnel and resources greatly enhances the quality of the research and ultimate accomplishments of the core investigators. The Genomics core is directed by Dr. Eric Pierce, an expert in the genetics and genomics of inherited ocular disease. Services provided by the Genomics core includes: Sanger sequencing, whole exome sequencing, selective exon capture and next generation sequencing (NGS) for ocular disease genes (RetNeT, glaucoma, optic neuropathy, mitochondrial DNA), genome-wide genotyping (both common and rare variation), copy number variation (CNV) using array CGH (comparative genomic hybridization), high-density genotypes and MLPA (multiplex ligation-dependent probe amplification), RNA sequencing (RNA-seq) for transcriptome analyses, and genomic bioinformatics (next-generation sequencing and transcriptome pipelines, genotype data cleaning, CNV analyses).

Public Health Relevance

Genetic and genomic data is an important feature of many different types of investigations carried out by MEEI vision scientists. The Genomics core resources will make it possible for core investigators to obtain high quality data that will enhance their overall research programs. The Genomics core resources will stimulate collaborations and facilitate translational research, a major goal of the overall Core.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZEY1)
Program Officer
Liberman, Ellen S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Eye and Ear Infirmary
United States
Zip Code
Loomis, Stephanie J; Kang, Jae H; Weinreb, Robert N et al. (2014) Association of CAV1/CAV2 genomic variants with primary open-angle glaucoma overall and by gender and pattern of visual field loss. Ophthalmology 121:508-16
Yanai, Ryoji; Mulki, Lama; Hasegawa, Eiichi et al. (2014) Cytochrome P450-generated metabolites derived from ?-3 fatty acids attenuate neovascularization. Proc Natl Acad Sci U S A 111:9603-8
Wiggs, Janey L; Pawlyk, Basil; Connolly, Edward et al. (2014) Disruption of the blood-aqueous barrier and lens abnormalities in mice lacking lysyl oxidase-like 1 (LOXL1). Invest Ophthalmol Vis Sci 55:856-64
Hasegawa, Eiichi; Sweigard, Harry; Husain, Deeba et al. (2014) Characterization of a spontaneous retinal neovascular mouse model. PLoS One 9:e106507
Isayama, Tomoki; Chen, Ying; Kono, Masahiro et al. (2014) Coexpression of three opsins in cone photoreceptors of the salamander Ambystoma tigrinum. J Comp Neurol 522:2249-65
Matsumoto, H; Murakami, Y; Kataoka, K et al. (2014) Mammalian STE20-like kinase 2, not kinase 1, mediates photoreceptor cell death during retinal detachment. Cell Death Dis 5:e1269
Takeuchi, Kimio; Yanai, Ryoji; Kumase, Fumiaki et al. (2014) EGF-like-domain-7 is required for VEGF-induced Akt/ERK activation and vascular tube formation in an ex vivo angiogenesis assay. PLoS One 9:e91849
Kang, J H; Loomis, S J; Yaspan, B L et al. (2014) Vascular tone pathway polymorphisms in relation to primary open-angle glaucoma. Eye (Lond) 28:662-71
Bailey, Jessica N Cooke; Yaspan, Brian L; Pasquale, Louis R et al. (2014) Hypothesis-independent pathway analysis implicates GABA and acetyl-CoA metabolism in primary open-angle glaucoma and normal-pressure glaucoma. Hum Genet 133:1319-30
Matsumoto, Hidetaka; Kataoka, Keiko; Tsoka, Pavlina et al. (2014) Strain difference in photoreceptor cell death after retinal detachment in mice. Invest Ophthalmol Vis Sci 55:4165-74

Showing the most recent 10 out of 164 publications