Columbia University has a large and vibrant vision research community supported by the National Eye Institute, with 20 qualifying grants. Vision research at Columbia ranges across a huge gamut of topics, from genetic studies of retinal and visual brain development in Drosophila and mice to epidemiological studies of the behavior of patients with eye disease. Computational, neurophysiological, light and electron microscopic, genetic, biochemical, and clinical techniques focus on a range of problems including the development of the eye and the visual brain, the mechanisms of ocular angiogenesis, the systems neuroscience of visual and oculomotor behavior, and the pathophysiology and treatment of retinal diseases such as macular degeneration. To support this vision research we are requesting the establishment of a National Eye Institute supported set of Core Facilities for Vision Research, to provide services that could not be provided by individual research grants. The proposed core will have three modules: a instrumentation fabrication and design module which will be the successor of a similar module which was funded by an NEI program which cannot be renewed;a computer support module which will include offsite data backup, support and maintenance for the hundreds of computers, including an X-grid cluster, used by the vision research community, and a microscopic imaging module which will provide histological and in vivo and fluorescent microscopy services. This core will also facilitate collaboration among members of the Columbia vision research community, and encourage scientists not currently engaged in vision research to use their expertise to solve problems related to vision.

Public Health Relevance

Vision is a unique process, depending upon both the eye and the brain. This Core Facilities grant will support work on basic and clinical aspects of vision research, from understanding how the eye and the visual brain develop, to the treatment of macular degeneration and the behavior of patients with ocular disease. By providing technical support, this core will enable its investigators to work effectively on problems related to the causes and treatment of blindness.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY019007-04
Application #
8494621
Study Section
Special Emphasis Panel (ZEY1-VSN (03))
Program Officer
Liberman, Ellen S
Project Start
2010-07-01
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$782,966
Indirect Cost
$296,652
Name
Columbia University (N.Y.)
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Xu, Christine L; Park, Karen Sophia; Tsang, Stephen H (2018) CRISPR/Cas9 genome surgery for retinal diseases. Drug Discov Today Technol 28:23-32
Cui, Xuan; Jauregui, Ruben; Park, Karen Sophia et al. (2018) Multimodal characterization of a novel mutation causing vitamin B6-responsive gyrate atrophy. Ophthalmic Genet 39:512-516
Racz, Boglarka; Varadi, Andras; Kong, Jian et al. (2018) A non-retinoid antagonist of retinol-binding protein 4 rescues phenotype in a model of Stargardt disease without inhibiting the visual cycle. J Biol Chem 293:11574-11588
Wu, Zhichao; Weng, Denis S D; Rajshekhar, Rashmi et al. (2018) Evaluation of a Qualitative Approach for Detecting Glaucomatous Progression Using Wide-Field Optical Coherence Tomography Scans. Transl Vis Sci Technol 7:5
Wu, Shih-Ying; Aurup, Christian; Sanchez, Carlos Sierra et al. (2018) Efficient Blood-Brain Barrier Opening in Primates with Neuronavigation-Guided Ultrasound and Real-Time Acoustic Mapping. Sci Rep 8:7978
Sengillo, Jesse D; Lee, Winston; Bilancia, Colleen G et al. (2018) Phenotypic expansion and progression of SPATA7-associated retinitis pigmentosa. Doc Ophthalmol 136:125-133
Kroeger, Heike; Grimsey, Neil; Paxman, Ryan et al. (2018) The unfolded protein response regulator ATF6 promotes mesodermal differentiation. Sci Signal 11:
Jauregui, Ruben; Thomas, Amanda L; Liechty, Benjamin et al. (2018) SCAPER-associated nonsyndromic autosomal recessive retinitis pigmentosa. Am J Med Genet A :
Sitko, Austen A; Kuwajima, Takaaki; Mason, Carol A (2018) Eye-specific segregation and differential fasciculation of developing retinal ganglion cell axons in the mouse visual pathway. J Comp Neurol 526:1077-1096
Scofield-Kaplan, Stacy M; Chen, Royce W S; Flynn Jr, Harry W et al. (2018) Recalcitrant Endogenous Trichosporon Endophthalmitis in 2 Immunocompromised Patients. Ophthalmol Retina 2:746-748

Showing the most recent 10 out of 313 publications