The goals of this proposal are to create, manage and maintain core facilities that will provide technical support, equipment access and personnel training for supported modules. We will establish two core modules including Live Animal Imaging and Functional Analysis, and Cellular Imaging and Morphometric Analysis Modules. These modules will be housed in convenient central locations, each containing state-of-the-art resources operated by highly qualified and well trained technicians that are supervised by junior faculty level Systems Managers and experienced senior vision researchers. The availability of multiple types of advanced equipment, sophisticated software, and hands on training will dramatically increase the quality and quantity of research achievements by the users of our Vision Core Grant facilities. Successful operation of these core facilities will: 1) increase opportunities for rigorous translational research using clinically relevant and non-invasive imaging procedures, 2) generate more collaborative projects that require multiple areas of expertise, 3) increase and enhance productivity of existing research projects thereby allowing participating investigators to remain competitive for funding, 4) promote recruitment of additional faculty, including two clinician scientists whom we are currently interviewing and 5) support the development of new research strategies based on the acquisition of data from the use of equipment previously unavailable to the PI's.

Public Health Relevance

The proposed core modules will create state-of-the-art facilities for clinically relevant analysis of ocular structure and visual function. Our proposal fulfills the mission of NEl P30 funding because it will support the research of 18 health-related NEI-funded ROl grants held by 14 talented investigators. The proposed core modules are anticipated to increase productivity of current investigators, facilitate recruitment of new investigators, and stimulate the development of collaborative translational research projects.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY021725-05
Application #
8898812
Study Section
Special Emphasis Panel (ZEY1)
Program Officer
Liberman, Ellen S
Project Start
2011-09-01
Project End
2016-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
5
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Royer, Derek J; Elliott, Michael H; Le, Yun Z et al. (2018) Corneal Epithelial Cells Exhibit Myeloid Characteristics and Present Antigen via MHC Class II. Invest Ophthalmol Vis Sci 59:1512-1522
Yang, Fan; Ma, Hongwei; Butler, Michael R et al. (2018) Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB J :fj201800484RR
Rajala, Raju V S; Rajala, Ammaji (2018) Redundant and Nonredundant Functions of Akt Isoforms in the Retina. Adv Exp Med Biol 1074:585-591
Yang, Fan; Ma, Hongwei; Boye, Sanford L et al. (2018) Overexpression of Type 3 Iodothyronine Deiodinase Reduces Cone Death in the Leber Congenital Amaurosis Model Mice. Adv Exp Med Biol 1074:125-131
Tarantini, Stefano; Valcarcel-Ares, M Noa; Yabluchanskiy, Andriy et al. (2018) Nrf2 Deficiency Exacerbates Obesity-Induced Oxidative Stress, Neurovascular Dysfunction, Blood-Brain Barrier Disruption, Neuroinflammation, Amyloidogenic Gene Expression, and Cognitive Decline in Mice, Mimicking the Aging Phenotype. J Gerontol A Biol Sci Med Sci 73:853-863
Coburn, Phillip S; Miller, Frederick C; LaGrow, Austin L et al. (2018) TLR4 modulates inflammatory gene targets in the retina during Bacillus cereus endophthalmitis. BMC Ophthalmol 18:96
Sharif, Rabab; Priyadarsini, Shrestha; Rowsey, Tyler G et al. (2018) Corneal Tissue Engineering: An In Vitro Model of the Stromal-nerve Interactions of the Human Cornea. J Vis Exp :
Rajala, Ammaji; Wang, Yuhong; Rajala, Raju V S (2018) Constitutive Activation Mutant mTOR Promote Cone Survival in Retinitis Pigmentosa Mice. Adv Exp Med Biol 1074:491-497
Reagan, Alaina M; Gu, Xiaowu; Paudel, Sijalu et al. (2018) Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency. Neurobiol Aging 71:1-12
Wang, Yuhong; Rajala, Ammaji; Rajala, Raju V S (2018) Nanoparticles as Delivery Vehicles for the Treatment of Retinal Degenerative Diseases. Adv Exp Med Biol 1074:117-123

Showing the most recent 10 out of 146 publications