Since phase I of our COBRE grant we have had a pilot project program and we plan to continue that program into phase III. The purpose of this program is to encourage faculty, especially junior faculty, to do research in project related to osteoarthritis by giving them the mentoring and support for pilot projects necessary for larger NIH grants such as those funded through the R01 mechanism. The pilot projects also extend the faculty involved in COBRE funded projects, which helps us as we create core resources and plan for program project grants. Through this mechanism we aim to enhance and grow the scientific community to advance osteoarthritis research at the University of Delaware. Pilot projects are generally given $50,000 (direct costs) for one year but may be renewed for a second year under meritorious circumstances. Most of the funding requested is for stipends for research assistants and for laboratory supplies (our university has waived tuition for graduate students). All pilot project PIs are required to have one scientific mentor. Projects are selected based on a two-stage review process. Priority scores are given by members of our Internal Steering Committee and funding decisions are made by our External Advisory Committee.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM103333-03
Application #
8688276
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
$153,000
Indirect Cost
$53,000
Name
University of Delaware
Department
Type
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Awad, Louis N; Reisman, Darcy S; Pohlig, Ryan T et al. (2016) Identifying candidates for targeted gait rehabilitation after stroke: better prediction through biomechanics-informed characterization. J Neuroeng Rehabil 13:84
Awad, Louis N; Reisman, Darcy S; Pohlig, Ryan T et al. (2016) Reducing The Cost of Transport and Increasing Walking Distance After Stroke: A Randomized Controlled Trial on Fast Locomotor Training Combined With Functional Electrical Stimulation. Neurorehabil Neural Repair 30:661-70
Fan, Lixia; Pei, Shaopeng; Lucas Lu, X et al. (2016) A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone. Bone Res 4:16032
Knarr, Brian A; Higginson, Jill S; Zeni, Joseph A (2016) Change in knee contact force with simulated change in body weight. Comput Methods Biomech Biomed Engin 19:320-323
Wellsandt, Elizabeth; Gardinier, Emily S; Manal, Kurt et al. (2016) Decreased Knee Joint Loading Associated With Early Knee Osteoarthritis After Anterior Cruciate Ligament Injury. Am J Sports Med 44:143-51
Capin, Jacob J; Khandha, Ashutosh; Zarzycki, Ryan et al. (2016) Gait mechanics and second ACL rupture: Implications for delaying return-to-sport. J Orthop Res :
Zellers, Jennifer A; Cortes, Daniel H; Silbernage L, Karin Grävare (2016) FROM ACUTE ACHILLES TENDON RUPTURE TO RETURN TO PLAY - A CASE REPORT EVALUATING RECOVERY OF TENDON STRUCTURE, MECHANICAL PROPERTIES, CLINICAL AND FUNCTIONAL OUTCOMES. Int J Sports Phys Ther 11:1150-1159
Palmer, Jacqueline A; Needle, Alan R; Pohlig, Ryan T et al. (2016) Atypical cortical drive during activation of the paretic and nonparetic tibialis anterior is related to gait deficits in chronic stroke. Clin Neurophysiol 127:716-23
Khandha, Ashutosh; Manal, Kurt; Wellsandt, Elizabeth et al. (2016) Gait mechanics in those with/without medial compartment knee osteoarthritis five years after anterior cruciate ligament reconstruction. J Orthop Res :
Srinivasan, Padma P; Parajuli, Ashutosh; Price, Christopher et al. (2015) Inhibition of T-Type Voltage Sensitive Calcium Channel Reduces Load-Induced OA in Mice and Suppresses the Catabolic Effect of Bone Mechanical Stress on Chondrocytes. PLoS One 10:e0127290

Showing the most recent 10 out of 45 publications