METABOLOMICS AND PROTEOMICS CORE ABSTRACT The Redox Biology Center (RBC) has combined expertise in mass spectrometry (MS) and nuclear magnetic resonance (NMR) to uniquely meet the metabolomic and proteomic needs of RBC members. The central goal of the RBC's Metabolomics and Proteomics Core (Core A) is to provide support for multiple RBC research projects that benefit from the inclusion of MS proteomics/metabolomics and NMR metabolomics. The Core also strives to support research projects involving investigators outside the RBC and conduct research with industrial partners. The Metabolomics and Proteomics Core is having a tremendous impact on publications and extramural grant applications and will continue to play a critical role in the research of RBC investigators in Phase III. In response to the needs of RBC investigators, the RBC proposes to build a research service in the Metabolomics and Proteomics Core that is dedicated to quantitative measurements of key redox markers. The main services provided by the Metabolomics and Proteomics Core in the Phase III funding cycle will be: 1) MS-based target metabolite measurements, protein identification, PTMs, and global proteomic profiling;2) NMR-based profiling of metabolic flux in cells (bacterial to mammalian);and 3) measurement of cellular redox status and oxidative stress. To continue providing these services and to support the overall aims of the RBC, funds are requested to support the Metabolomics and Proteomics Core in achieving its four specific aims: 1) maintain instrumentation, further develop MS- and NMR-based methods, and provide technical support to aid the RBC and scientific community at large in metabolomics and proteomics research;2) establish a research service arm of the Core that capitalizes on the state-of-the-art MS equipment and is dedicated to providing robust analytical methods for quantifying oxidative stress markers and redox status;3) provide preliminary data and analysis to assist in the success of RBC grant proposal submissions, train/educate RBC faculty and students in MS and NMR methods;4) facilitate collaborations with RBC and outside researchers by expanding support to projects that will benefit by incorporating metabolomic/proteomic approaches. Core success has been bolstered by major investments by UNL, including funds to support the acquisition of a Bruker SolariX 70 Hybrid FTMS System. This instrument is now part of the Core and provides outstanding flexibility in its application and is enabling the Core to expand its research capabilities. The comprehensive operational plan of the Metabolomics and Proteomics Core coupled with UNL's continued support will ensure the long-term sustainability the Core.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM103335-02
Application #
8537961
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$283,577
Indirect Cost
$88,678
Name
University of Nebraska Lincoln
Department
Type
DUNS #
555456995
City
Lincoln
State
NE
Country
United States
Zip Code
68588
Luo, Min; Gamage, Thameesha T; Arentson, Benjamin W et al. (2016) Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. J Biol Chem 291:24065-24075
Ahmad, Iman M; Temme, James B; Abdalla, Maher Y et al. (2016) Redox status in workers occupationally exposed to long-term low levels of ionizing radiation: A pilot study. Redox Rep 21:139-45
Smith, Nathan; Wei, Wenzhong; Zhao, Miaoyun et al. (2016) Cadmium and Secondary Structure-dependent Function of a Degron in the Pca1p Cadmium Exporter. J Biol Chem 291:12420-31
Levytskyy, Roman M; Germany, Edward M; Khalimonchuk, Oleh (2016) Mitochondrial Quality Control Proteases in Neuronal Welfare. J Neuroimmune Pharmacol 11:629-644
Swenson, Samantha; Cannon, Andrew; Harris, Nicholas J et al. (2016) Analysis of Oligomerization Properties of Heme a Synthase Provides Insights into Its Function in Eukaryotes. J Biol Chem 291:10411-25
Bohovych, Iryna; Kastora, Stavroula; Christianson, Sara et al. (2016) Oma1 Links Mitochondrial Protein Quality Control and TOR Signaling To Modulate Physiological Plasticity and Cellular Stress Responses. Mol Cell Biol 36:2300-12
Navarro-Yepes, Juliana; Anandhan, Annadurai; Bradley, Erin et al. (2016) Inhibition of Protein Ubiquitination by Paraquat and 1-Methyl-4-Phenylpyridinium Impairs Ubiquitin-Dependent Protein Degradation Pathways. Mol Neurobiol 53:5229-51
Smith, Nathan; Adle, David J; Zhao, Miaoyun et al. (2016) Endoplasmic Reticulum-associated Degradation of Pca1p, a Polytopic Protein, via Interaction with the Proteasome at the Membrane. J Biol Chem 291:15082-92
Worley, Bradley; Powers, Robert (2016) PCA as a practical indicator of OPLS-DA model reliability. Curr Metabolomics 4:97-103
Jouett, Noah P; Moralez, Gilbert; White, Daniel W et al. (2016) N-Acetylcysteine reduces hyperacute intermittent hypoxia-induced sympathoexcitation in human subjects. Exp Physiol 101:387-96

Showing the most recent 10 out of 77 publications