The Biotechnology Core for the CCCR will be housed in the University of South Carolina Instrumentation Resource Facility (IRF). The IRF is an established biotechnology core, with a 20 year history, that provides a wide range of state-of-the-art equipment for microscopy, cell sorting, small animal imaging, and several molecular techniques for researchers. The facility is staffed with three full time faculty, two part time faculty, and four technicians that assist investigators with design of their experiments and grant proposals, processing of research samples, operation of equipment, and training of faculty, staff and students. Several nationally recognized workshops and graduate level courses are also available through the IRF. Funding of the IRF is generated from a variety of sources including grants from NIH for acquisition of major equipment, faculty collaborations on a variety of funding programs from federal and private sources, user fees, and University support. The goals of the Biotechnology Core will be addressed through three Specific Aims: 1) to provide access to a wide range of techniques and major equipment including, but not limited to, flow cytometry and cell sorting, histology, immunohistochemistry, live cell and confocal imaging, electron microscopy, and small animal ultrasound and fluorescence imaging;2) to provide the technical expertise to assist and train CCCR Investigators and members of their laboratories on the use of equipment available in the Biotechnology Core;and 3) through group meetings and consultation identify and prepare proposals to acquire new technology which will benefit the research programs of the CCCR and other investigators.

Public Health Relevance

To fully understand the complex cell and tissue interactions that occur in cancer it is essential to have a range of instrumentation available to study the development and progression of the disease. The Biotechnology Core will provide these instruments for the CCCR and other investigators at the University of South Carolina as well as surrounding institutions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM103336-02
Application #
8731923
Study Section
Special Emphasis Panel (ZGM1-TWD-C)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
2
Fiscal Year
2014
Total Cost
$137,750
Indirect Cost
$42,750
Name
University of South Carolina at Columbia
Department
Type
DUNS #
041387846
City
Columbia
State
SC
Country
United States
Zip Code
29208
Liang, Jiaxin; Chen, Mengqian; Hughes, Daniel et al. (2018) CDK8 Selectively Promotes the Growth of Colon Cancer Metastases in the Liver by Regulating Gene Expression of TIMP3 and Matrix Metalloproteinases. Cancer Res 78:6594-6606
Liu, Shou; Lee, Ji Shin; Jie, Chunfa et al. (2018) HER2 Overexpression Triggers an IL1? Proinflammatory Circuit to Drive Tumorigenesis and Promote Chemotherapy Resistance. Cancer Res 78:2040-2051
Wyatt, Michael D; Reilly, Nicole M; Patel, Shikha et al. (2018) Thiopurine-induced mitotic catastrophe in Rad51d-deficient mammalian cells. Environ Mol Mutagen 59:38-48
Liu, Changlong; Banister, Carolyn E; Weige, Charles C et al. (2018) PRDM1 silences stem cell-related genes and inhibits proliferation of human colon tumor organoids. Proc Natl Acad Sci U S A 115:E5066-E5075
Kaur, Kamaljeet; Saxena, Arpit; Debnath, Irina et al. (2018) Antibiotic-mediated bacteriome depletion in ApcMin/+ mice is associated with reduction in mucus-producing goblet cells and increased colorectal cancer progression. Cancer Med 7:2003-2012
Eberth, Jan M; Thibault, Annie; Caldwell, Renay et al. (2018) A statewide program providing colorectal cancer screening to the uninsured of South Carolina. Cancer 124:1912-1920
Farmaki, Elena; Kaza, Vimala; Papavassiliou, Athanasios G et al. (2017) Induction of the MCP chemokine cluster cascade in the periphery by cancer cell-derived Ccl3. Cancer Lett 389:49-58
Brown, Jacob L; Rosa-Caldwell, Megan E; Lee, David E et al. (2017) Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J Cachexia Sarcopenia Muscle 8:926-938
Hetzler, Kimbell L; Hardee, Justin P; LaVoie, Holly A et al. (2017) Ovarian function's role during cancer cachexia progression in the female mouse. Am J Physiol Endocrinol Metab 312:E447-E459
Chandrashekaran, Varun; Seth, Ratanesh K; Dattaroy, Diptadip et al. (2017) HMGB1-RAGE pathway drives peroxynitrite signaling-induced IBD-like inflammation in murine nonalcoholic fatty liver disease. Redox Biol 13:8-19

Showing the most recent 10 out of 51 publications