The ability to visualize and determine the localization of molecules within cells and tissues is an essential component of modern biology. Imaging and histology are central to the research mission of the CEHS and its members. The rapid advances in imaging technology within the last decade have greatly advanced the field and provided for new and exciting lines of inquiry. As imaging technologies have become more sophisticated, new and updated equipment and the expertise to use them efficiently and to their full potential is required for investigators to remain competitive. However, the costs and time required to master these techniques are prohibitive for most investigators. The purpose of the Molecular Histology and Fluorescence Imaging (MHFI) Core is to provide CEHS investigators with the means and expertise to perform cutting-edge histology and imaging experiments using state-of-the-art equipment and technical expertise. The histology component provides users with automated sample preparation, increasing throughput while at the same time standardizing sample preparation and staining. This is essential to CEHS investigators as they assess the biological outcome of exposure to environmental toxicants and xenobiotics. The fluorescence imaging component maintains a new, state-of-the-art Olympus FV1000 confocal microscope with spectral detection, live cell, 3D, and TIRF capabilities. The MHFI Core also has a Nuance Multispectral Imaging system and several off-line image analysis workstations allowing users sophisticated tools necessary to analyze their data. Most importantly, in addition to the equipment the Core provides investigators with expert advise and technical expertise to design, implement, and critically analyze histology and fluorescent imaging experiments. The unique services provided by the MHFI Core and its staff is critically important to the competitiveness and success of CEHS investigators and for investigators across the University of Montana and the region in obtaining and maintaining extramural funding.

Public Health Relevance

The MHFI Core will provide CEHS and other UM investigators access to state-of-the-art histological preparation and fluorescence imaging technologies. The Core will serve as a technical resource for investigators by providing scientific expertise to assist with experimental design, data analysis and interpretation, and training.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
1P30GM103338-01A1
Application #
8543889
Study Section
Special Emphasis Panel (ZGM1-TWD-C (C3))
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-03-31
Support Year
1
Fiscal Year
2013
Total Cost
$133,824
Indirect Cost
$39,249
Name
University of Montana
Department
Type
DUNS #
010379790
City
Missoula
State
MT
Country
United States
Zip Code
59812
Beamer, Celine A; Kreitinger, Joanna M; Cole, Shelby L et al. (2018) Targeted deletion of the aryl hydrocarbon receptor in dendritic cells prevents thymic atrophy in response to dioxin. Arch Toxicol :
Peters, Bridget; Ballmann, Christopher; Quindry, Tiffany et al. (2018) Experimental Woodsmoke Exposure During Exercise and Blood Oxidative Stress. J Occup Environ Med 60:1073-1081
Tait Wojno, Elia D; Beamer, Celine A (2018) Isolation and Identification of Innate Lymphoid Cells (ILCs) for Immunotoxicity Testing. Methods Mol Biol 1803:353-370
Hamilton, Raymond F; Wu, Zheqiong; Mitra, Somenath et al. (2018) The Effects of Varying Degree of MWCNT Carboxylation on Bioactivity in Various In Vivo and In Vitro Exposure Models. Int J Mol Sci 19:
Cho, Yoon Hee; Jang, Yoonhee; Woo, Hae Dong et al. (2018) LINE-1 Hypomethylation is Associated With Radiation-Induced Genomic Instability in Industrial Radiographers. Environ Mol Mutagen :
Carvalho, Sophia; Ferrini, Maria; Herritt, Lou et al. (2018) Multi-Walled Carbon Nanotubes Augment Allergic Airway Eosinophilic Inflammation by Promoting Cysteinyl Leukotriene Production. Front Pharmacol 9:585
Simons, Bryan; Ferrini, Maria E; Carvalho, Sophia et al. (2017) PGI2 Controls Pulmonary NK Cells That Prevent Airway Sensitization to House Dust Mite Allergen. J Immunol 198:461-471
Cole, Elizabeth; Brown, Traci A; Pinkerton, Kent E et al. (2017) Perinatal exposure to environmental tobacco smoke is associated with changes in DNA methylation that precede the adult onset of lung disease in a mouse model. Inhal Toxicol 29:435-442
Jessop, Forrest; Hamilton Jr, Raymond F; Rhoderick, Joseph F et al. (2017) Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicol Appl Pharmacol 318:58-68
Biswas, Rupa; Trout, Kevin L; Jessop, Forrest et al. (2017) Imipramine blocks acute silicosis in a mouse model. Part Fibre Toxicol 14:36

Showing the most recent 10 out of 36 publications