The Administrative Core serves as a fiscal, assessment, planning, organizational and mentoring hub for the COBRE in Lipidomics and Pathobiology. Similar to the structure and function in Phase l/ll of this COBRE, the Administrative Core will act as a conduit for communication between the program director, co-director, pilot investigators, core directors, mentors and Internal and External Advisory Committees. The Administrative Core will facilitate the implementation of the strategies and goals outlined in Section D of the Program Overview. Importantly, the core will serve as the hub for the development and advancement of the Lipidomics Portal. The Administrative Core is made up of four main components: The Business Management (A-1) component is responsible for managing all of the administrative and fiscal aspects of the COBRE. This component is also responsible for scheduling all of the regular scientific meetings, as well as the annual meetings of the Internal and External Advisory Board and the Steering Committee. This component is heavily engaged in the regular assessment of core performance and preparation of the annual progress reports. The functions of the Mentoring and Faculty Development (A-2) component include implementing and supervising mentoring plans to ensure the success and independence of the junior target investigators. This component will also expand to include working with mid-level faculty on grant renewals and potential program projects, as well as mentoring users of the scientific cores. The objective of the Lipidomics Portal (A-3) component is to provide a one-stop shop for researchers to request lipidomics core services, share experimental data, network with their peers and the CTSA community, and publicize discoveries in this field. The fourth component of the Administrative Core is the Sustainability Plan (A-4). This component has the primary responsibility of identifying a range of potential fiscal opportunities and implementing strategies necessary to provide independent long-term support to the Center for Lipidomics and Pathobiology.

Public Health Relevance

This proposal is to support several unique core resources that significantly enhance research on novel bioactive lipids that are involved in many important diseases including cancer, neurodegeneration, diabetes and cardiovascular disease. Moreover, the research has significant impact on drug discovery and innovative biomedical industry that will benefit the economy of SC.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM103339-03
Application #
8714007
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
City
Charleston
State
SC
Country
United States
Zip Code
29403
Panneer Selvam, Shanmugam; Roth, Braden M; Nganga, Rose et al. (2018) Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3. J Biol Chem 293:9784-9800
Fekry, Baharan; Jeffries, Kristen A; Esmaeilniakooshkghazi, Amin et al. (2018) C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat Commun 9:4149
Kim, Myung Jong; Jeon, Sohee; Burbulla, Lena F et al. (2018) Acid ceramidase inhibition ameliorates ?-synuclein accumulation upon loss of GBA1 function. Hum Mol Genet 27:1972-1988
Helke, Kristi; Angel, Peggi; Lu, Ping et al. (2018) Ceramide Synthase 6 Deficiency Enhances Inflammation in the DSS model of Colitis. Sci Rep 8:1627
Scheffel, Matthew J; Helke, Kristi; Lu, Ping et al. (2017) Adoptive Transfer of Ceramide Synthase 6 Deficient Splenocytes Reduces the Development of Colitis. Sci Rep 7:15552
Ghatak, Shibnath; Markwald, Roger R; Hascall, Vincent C et al. (2017) Transforming growth factor ?1 (TGF?1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem 292:10465-10489
Ghatak, Shibnath; Hascall, Vincent C; Markwald, Roger R et al. (2017) Transforming growth factor ?1 (TGF?1)-induced CD44V6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 292:10490-10519
Gencer, Salih; Oleinik, Natalia; Kim, Jisun et al. (2017) TGF-? receptor I/II trafficking and signaling at primary cilia are inhibited by ceramide to attenuate cell migration and tumor metastasis. Sci Signal 10:
Bai, Aiping; Mao, Cungui; Jenkins, Russell W et al. (2017) Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase. PLoS One 12:e0177805
Kim, Soohyun P; Frey, Julie L; Li, Zhu et al. (2017) Lack of Lrp5 Signaling in Osteoblasts Sensitizes Male Mice to Diet-Induced Disturbances in Glucose Metabolism. Endocrinology 158:3805-3816

Showing the most recent 10 out of 21 publications