The overall objective of the Animal Pathobiology Core is to provide the Center investigators with the ability to utilize animal models in the execution of their proposed research projects as well as establish new animal model for the investigation of the mechanisms involved in the pathogenesis of disease. The Core is a unique and integral part of the translational research development of the Center for Lipidomics and Pathobiology and is the only facility that encompasses a unique compilation of lipid-related animal models. Encompassed in the more than 25 genetically altered mice are knockout strains for 11 sphingolipid metabolizing enzymes, 3 for the sphingolipid receptors, and 4 related to sphingolipid metabolism, as well as 7 transgenic strains for sphingolipid or sphingolipid-related proteins. The Animal Pathobiology Core also obtains and facilitates the creation of novel genetically altered animal models;including generation of gene targeted and deleted animals through coordination with other existing shared resources available at MUSC. These animal models are then housed, bred and backcrossed by the Core to facilitate their use by Center investigators. In addition to animals/models for projects, the Core provides expertise in planning, execution and data interpretation. Finally, the Core provides tutorials and facilitates education of users in various aspects of animal research. Thus, this centralized resource enables Center investigators in the use of equipment, expertise and animal resources making animal research more feasible, accessible and cost effective. By focusing on sphingolipid-related targets and associated pathobiologic processes, the Core is emerging as a key component enabling pre-clinical translational research for Center investigators.

Public Health Relevance

This proposal is to support several unique core resources that significantly enhance research on novel bioactive lipids that are involved in many important diseases including cancer, neurodegeneration, diabetes and cardiovascular disease. Moreover the research has significant impact on drug discovery and innovative biomedical industry that will benefit the economy of SC.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM103339-03
Application #
8714009
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
City
Charleston
State
SC
Country
United States
Zip Code
29403
Spassieva, Stefka D; Ji, Xiaojie; Liu, Ye et al. (2016) Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency. Proc Natl Acad Sci U S A 113:5928-33
Dany, Mohammed; Gencer, Salih; Nganga, Rose et al. (2016) Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood 128:1944-1958
Yu, H; Sun, C; Argraves, K M (2016) Periodontal inflammation and alveolar bone loss induced by Aggregatibacter actinomycetemcomitans is attenuated in sphingosine kinase 1-deficient mice. J Periodontal Res 51:38-49
Podbielska, Maria; Szulc, Zdzisław M; Kurowska, Ewa et al. (2016) Cytokine-induced release of ceramide-enriched exosomes as a mediator of cell death signaling in an oligodendroglioma cell line. J Lipid Res 57:2028-2039
Novgorodov, Sergei A; Riley, Christopher L; Keffler, Jarryd A et al. (2016) SIRT3 Deacetylates Ceramide Synthases: IMPLICATIONS FOR MITOCHONDRIAL DYSFUNCTION AND BRAIN INJURY. J Biol Chem 291:1957-73
Yu, Hong; Herbert, Bethany A; Valerio, Michael et al. (2015) FTY720 inhibited proinflammatory cytokine release and osteoclastogenesis induced by Aggregatibacter actinomycetemcomitans. Lipids Health Dis 14:66
Venant, Heather; Rahmaniyan, Mehrdad; Jones, E Ellen et al. (2015) The Sphingosine Kinase 2 Inhibitor ABC294640 Reduces the Growth of Prostate Cancer Cells and Results in Accumulation of Dihydroceramides In Vitro and In Vivo. Mol Cancer Ther 14:2744-52
Geng, Tuoyu; Sutter, Alton; Harland, Michael D et al. (2015) SphK1 mediates hepatic inflammation in a mouse model of NASH induced by high saturated fat feeding and initiates proinflammatory signaling in hepatocytes. J Lipid Res 56:2359-71
Novgorodov, Sergei A; Riley, Christopher L; Yu, Jin et al. (2014) Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury. J Biol Chem 289:13142-54
Snider, Ashley J (2013) Sphingosine kinase and sphingosine-1-phosphate: regulators in autoimmune and inflammatory disease. Int J Clin Rheumtol 8: