The Protein Science Translation Core was created to assist Investigators of the COBRE in Lipidomics and Pathobiology in studying structures and functions of proteins involved in the regulation of lipid metabolism and signaling. Over the years, the Core has transitioned from a strictly consultative role to a more active role in servicing investigators in various aspects of protein science. Moreover, as the bulk of research in the COBRE continues to evolve towards pre-clinical and translational sciences, the Core has become essential in supporting this effort by enabling studies on target validation and enzyme-targeted translational research and therapeutics. Since 2002, the Core has serviced more than 25 investigators and worked on 35 proteins.
The aims of the Core during Phase III of COBRE funding are to: 1) produce proteins of interest for individual investigators that are needed for structural and functional characterization and for translational research programs at MUSC;2) offer a wide range of protein-related specialty services to suit the needs of investigators and to coordinate the needs of Center investigators with other existing facilities at MUSC;and 3) enhance the understanding and capability of investigators in protein science through mentoring, consultation, and promotional seminars. Taken together, these aims will contribute to the scientific achievement of investigators in South Carolina whose research involve some aspects of protein science, which in the long run could contribute to the development of drugs against specific diseases. The usefulness and popularity of the Core will in turn enhance its prospect in achieving self-sustainability.

Public Health Relevance

This proposal is to support several unique core resources that significantly enhance research on novel bioactive lipids that are involved in many important diseases including cancer, neurodegeneration, diabetes and cardiovascular disease. Moreover the research has significant impact on drug discovery and Innovative biomedical industry that will benefit the economy of SC.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical University of South Carolina
United States
Zip Code
Spassieva, Stefka D; Ji, Xiaojie; Liu, Ye et al. (2016) Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency. Proc Natl Acad Sci U S A 113:5928-33
Dany, Mohammed; Gencer, Salih; Nganga, Rose et al. (2016) Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood 128:1944-1958
Yu, H; Sun, C; Argraves, K M (2016) Periodontal inflammation and alveolar bone loss induced by Aggregatibacter actinomycetemcomitans is attenuated in sphingosine kinase 1-deficient mice. J Periodontal Res 51:38-49
Podbielska, Maria; Szulc, Zdzisław M; Kurowska, Ewa et al. (2016) Cytokine-induced release of ceramide-enriched exosomes as a mediator of cell death signaling in an oligodendroglioma cell line. J Lipid Res 57:2028-2039
Novgorodov, Sergei A; Riley, Christopher L; Keffler, Jarryd A et al. (2016) SIRT3 Deacetylates Ceramide Synthases: IMPLICATIONS FOR MITOCHONDRIAL DYSFUNCTION AND BRAIN INJURY. J Biol Chem 291:1957-73
Yu, Hong; Herbert, Bethany A; Valerio, Michael et al. (2015) FTY720 inhibited proinflammatory cytokine release and osteoclastogenesis induced by Aggregatibacter actinomycetemcomitans. Lipids Health Dis 14:66
Venant, Heather; Rahmaniyan, Mehrdad; Jones, E Ellen et al. (2015) The Sphingosine Kinase 2 Inhibitor ABC294640 Reduces the Growth of Prostate Cancer Cells and Results in Accumulation of Dihydroceramides In Vitro and In Vivo. Mol Cancer Ther 14:2744-52
Geng, Tuoyu; Sutter, Alton; Harland, Michael D et al. (2015) SphK1 mediates hepatic inflammation in a mouse model of NASH induced by high saturated fat feeding and initiates proinflammatory signaling in hepatocytes. J Lipid Res 56:2359-71
Novgorodov, Sergei A; Riley, Christopher L; Yu, Jin et al. (2014) Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury. J Biol Chem 289:13142-54
Snider, Ashley J (2013) Sphingosine kinase and sphingosine-1-phosphate: regulators in autoimmune and inflammatory disease. Int J Clin Rheumtol 8: