The NIH has emphasized computational approaches to biology in the NIH-Director's roadmap for a decade. The human brain contains many complex systems that underlie the problems of human health. Mathematical and computational approaches are required to make sense of the complexity, and to analyze the vast data sets that are currently being generated. The mission of this Core Facility is the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of neurobiological systems. In keeping with the research expertise and experience of the Core Director, the core will support projects with an emphasis on oscillations and synchrony. Since computational approaches so often complement experimental neuroscience, the presence of such a resource will facilitate new collaborative grants, and could proved essential components for training grants and program project grants. This core is poised to contribute to the transition to self-sufficiency by helping the Neuroscience Center of Excellence achieve a critical mass of R01-funded PIs by achieving new R01s for the remaining mentees as well as sustaining existing R01s and achieving new R01s for the existing PIs. The core will also contribute to our efforts to secure a Ruth L. Kirschstein National Research Service Award (NRSA) institutional training T32 award by contributing an inter- and multi-disciplinary dimension to the research environment, since techniques from physics, mathematics, engineering and computer science will be applied to neurobiological problems. The two specific aims of this core are: 1) To provide infrastructure support for funded grants that listed the computational core as a significant strength of the research environment;and 2) To allow for the collection of preliminary data and to develop new data-analytic methods to support strong new R01 applications.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Louisiana State Univ Hsc New Orleans
New Orleans
United States
Zip Code
Canavier, Carmen C (2015) Phase-resetting as a tool of information transmission. Curr Opin Neurobiol 31:206-13
Yu, Na; Tucker, Kristal R; Levitan, Edwin S et al. (2014) Implications of cellular models of dopamine neurons for schizophrenia. Prog Mol Biol Transl Sci 123:53-82
Hong, Sung-Ha; Belayev, Ludmila; Khoutorova, Larissa et al. (2014) Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci 338:135-41
Zemski Berry, Karin A; Gordon, William C; Murphy, Robert C et al. (2014) Spatial organization of lipids in the human retina and optic nerve by MALDI imaging mass spectrometry. J Lipid Res 55:504-15
Li, Songhua; Izumi, Tadahide; Hu, Jane et al. (2014) Rescue of enzymatic function for disease-associated RPE65 proteins containing various missense mutations in non-active sites. J Biol Chem 289:18943-56
Li, Long; Tian, Xiaolin; Zhu, Mingwei et al. (2014) Drosophila Syd-1, liprin-?, and protein phosphatase 2A B' subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons. J Neurosci 34:8474-87
Bazan, Nicolas G (2014) Is there a molecular logic that sustains neuronal functional integrity and survival? Lipid signaling is necessary for neuroprotective neuronal transcriptional programs. Mol Neurobiol 50:1-5
Thounaojam, Umeshkanta S; Cui, Jianxia; Norman, Sharon E et al. (2014) Slow noise in the period of a biological oscillator underlies gradual trends and abrupt transitions in phasic relationships in hybrid neural networks. PLoS Comput Biol 10:e1003622
Tikidji-Hamburyan, Ruben; Lin, Eric C; Gasparini, Sonia et al. (2014) Effect of heterogeneity and noise on cross frequency phase-phase and phase-amplitude coupling. Network 25:38-62
Gordon, William C; Bazan, Nicolas G (2013) Mediator lipidomics in ophthalmology: targets for modulation in inflammation, neuroprotection and nerve regeneration. Curr Eye Res 38:995-1005

Showing the most recent 10 out of 18 publications