The goal of the Mediator-Lipidomics Core Facility is to support the lipidomics studies in projects at the NCE, at LSUHSC, and within other institutions in our region so that investigators are able to successfully fulfill their proposed goals. Furthermore, the core will help them to obtain substantial extramural funds, which in turn will financially support the future operation of this Core through a fee-for-service plan after the five-year COBRE-funded period. The Mediator-Lipidomics Core contains the ultra-performance liquid chromatography - tandem mass spectrometers, gas chromatography, thin layer chromatography, and all necessary materials for the isolation, purification, identification, quantification, and storage of lipid mediators and their precursor lipids. The mass spectrometry, gas chromatography, lipidomic sample preparation systems, and other accessories, facilities service a significant percentage of the biomedical researchers and clinical scientists in the greater New Orleans area and throughout the state of Louisiana. Priority is given to investigators within the Neuroscience Center of Excellence (NCE). To efficiently support the investigators, especially those who are developing their career towards NIH-supported independent principal investigators, we propose three Specific Aims for our Mediator-Lipidomics Core: 1: To assist investigators with state-of-the-art technologies of ultraperformance liquid chromatography coupled with tandem mass spectrometry and gas chromatography for studying and analyzing lipid mediators, fatty acid composition, lipid classes and molecular species important for neurons and the nervous system. 2: To provide expert advice and guidance on sample preparation and use of the equipment. 3: To provide assistance to new principal investigators (NPIs) and established Pis in their efforts to obtain NIH R01, P01, P50, U54, T32 grants, etc., as well as Louisiana Board of Regents Awards. The Mediator-Lipidomics Core will provide expert consultation to facilitate PIs to develop hypotheses and specific aims for their approaches. It will also contribute to the sustainability of existing grants, and overall, the COBRE Transitional Center.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Louisiana State Univ Hsc New Orleans
New Orleans
United States
Zip Code
Pham, Thang Luong; He, Jiucheng; Kakazu, Azucena H et al. (2017) Defining a mechanistic link between pigment epithelium-derived factor, docosahexaenoic acid, and corneal nerve regeneration. J Biol Chem 292:18486-18499
Lin, Eric C; Combe, Crescent L; Gasparini, Sonia (2017) Differential Contribution of Ca2+-Dependent Mechanisms to Hyperexcitability in Layer V Neurons of the Medial Entorhinal Cortex. Front Cell Neurosci 11:182
He, Jiucheng; Pham, Thang Luong; Kakazu, Azucena et al. (2017) Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment. Diabetes 66:2511-2520
Belayev, Ludmila; Mukherjee, Pranab K; Balaszczuk, Veronica et al. (2017) Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke. Cell Death Differ 24:1091-1099
Alapure, Bhagwat V; Lu, Yan; Peng, Hongying et al. (2017) Surgical Denervation of Specific Cutaneous Nerves Impedes Excisional Wound Healing of Small Animal Ear Pinnae. Mol Neurobiol :
Jun, Bokkyoo; Mukherjee, Pranab K; Asatryan, Aram et al. (2017) Elovanoids are novel cell-specific lipid mediators necessary for neuroprotective signaling for photoreceptor cell integrity. Sci Rep 7:5279
Bhattacharjee, Surjyadipta; Jun, Bokkyoo; Belayev, Ludmila et al. (2017) Elovanoids are a novel class of homeostatic lipid mediators that protect neural cell integrity upon injury. Sci Adv 3:e1700735
He, Jiucheng; Cosby, Richard; Hill, James M et al. (2017) Changes in Corneal Innervation after HSV-1 Latency Established with Different Reactivation Phenotypes. Curr Eye Res 42:181-186
Asatryan, Aram; Bazan, Nicolas G (2017) Molecular mechanisms of signaling via the docosanoid neuroprotectin D1 for cellular homeostasis and neuroprotection. J Biol Chem 292:12390-12397
Canavier, Carmen C; Tikidji-Hamburyan, Ruben A (2017) Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling. Phys Rev E 95:032215

Showing the most recent 10 out of 73 publications