In this third, transitional, cycle of the Cardiovascular COBRE grant we request continued support for the operation and expansion of the Mouse Physiology Core (MPC) as we seek to create a critical and sustainable resource for the biomedical research effort in our School and State. The MPC has been intensively utilized by all of our junior investigators as well as more senior investigators. The MPC has been a vital part of the projects that have been conducted by every investigator at the Center for Cardiovascular Research. Investigators outside of our Center have been utilizing the core at an increased frequency, and we have substantial interest from local biotechnology companies as well. Thus the Core is fulfilling its overall purpose of providing a set of expertise and methods required for modern biomedical investigation at our new Medical School. The three goals of each of our cores are service, education, and innovation.
Our aims will support these goals:
Aim 1. Provide comprehensive cardiovascular mouse phenotyping and manipulation to an increasing number of investigators in the CCR, the Medical School, the University, and beyond. Our priority in this cores to provide convenient, inexpensive, and reliable access to the basic physiology and phenotyping services. This will include diagnostic evaluation and measures to stress cardiovascular physiology.
Aim 2. Provide education and instruction in the resources and capabilities of the Core. This will include training students and technicians in echocardiography and surgery, enhancing the skills of the technicians in the Core, and providing consultation for optimal design of animal experiments.
Aim 3. Develop new methods and capabilities for assessing and investigating the mouse heart and vasculature. The Core will also continue to support exploration of new ideas that relate to cardiovascular experimentation in the mouse. This will include acquiring skills for catheterization and ventricular hemodynamics, and continued efforts to increase the efficiency of Ultrasound Targeted Microbubble Destruction as a method for genetic modification of the murine heart.

Public Health Relevance

The Mouse Physiology Core provides modern resources for biomedical research that are otherwise unavailable in the state. It has trained a cadre of students in techniques and is pursuing innovative research into mouse models and technologies. This Core is necessary for the continued success of the Center for Cardiovascular Research, and has robust institutional support. We are creating a sustainable resource for investigators who will now be able to address cardiovascular disease using the best tools available

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM103341-02
Application #
8550112
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$281,200
Indirect Cost
$93,734
Name
University of Hawaii
Department
Type
DUNS #
965088057
City
Honolulu
State
HI
Country
United States
Zip Code
96822
Peterman, Karen; Withy, Kelley; Boulay, Rachel (2018) Validating Common Measures of Self-Efficacy and Career Attitudes within Informal Health Education for Middle and High School Students. CBE Life Sci Educ 17:ar26
Marciel, Michael P; Rose, Aaron H; Martinez, Verena et al. (2018) Calpain-2 inhibitor treatment preferentially reduces tumor progression for human colon cancer cells expressing highest levels of this enzyme. Cancer Med 7:175-183
Marciel, Michael P; Khadka, Vedbar S; Deng, Youpeng et al. (2018) Selenoprotein K deficiency inhibits melanoma by reducing calcium flux required for tumor growth and metastasis. Oncotarget 9:13407-13422
Pomozi, Viola; Brampton, Christopher; Szeri, Flóra et al. (2017) Functional Rescue of ABCC6 Deficiency by 4-Phenylbutyrate Therapy Reduces Dystrophic Calcification in Abcc6-/- Mice. J Invest Dermatol 137:595-602
Norton, Robert L; Fredericks, Gregory J; Huang, Zhi et al. (2017) Selenoprotein K regulation of palmitoylation and calpain cleavage of ASAP2 is required for efficient Fc?R-mediated phagocytosis. J Leukoc Biol 101:439-448
Lum, Corey J; Nakagawa, Kazuma; Shohet, Ralph V et al. (2017) The Cost-Benefit Balance of Statins in Hawai'i: A Moving Target. Hawaii J Med Public Health 76:99-102
Dedinszki, Dóra; Szeri, Flóra; Kozák, Eszter et al. (2017) Oral administration of pyrophosphate inhibits connective tissue calcification. EMBO Mol Med 9:1463-1470
Pomozi, Viola; Brampton, Christopher; van de Wetering, Koen et al. (2017) Pyrophosphate Supplementation Prevents Chronic and Acute Calcification in ABCC6-Deficient Mice. Am J Pathol 187:1258-1272
Fong, Keith S K; Hufnagel, Robert B; Khadka, Vedbar S et al. (2016) A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure. Dis Model Mech 9:585-96
Chew, Glen M; Fujita, Tsuyoshi; Webb, Gabriela M et al. (2016) TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection. PLoS Pathog 12:e1005349

Showing the most recent 10 out of 71 publications