We propose to build on the success of COBRE phase I and phase II awards to establish four research cores that will provide the infrastructure to take our Center to the next level. In addition, COBRE III will provide a mechanism for pilot research projects to continue to develop vibrant teams of investigators in biomaterials research. Significant biomedical therapies are likely to emerge from novel biomaterials that are designed at the molecular level to offer customized control over mechanical and biological properties. The realization of such biomaterials requires synergy between diverse research communities of organic chemistry, molecular design, biochemistry, biology, biophysical chemistry, and materials engineering. Collaborations between an outstanding group of junior, mid-career and senior investigators spanning multiple units across campus were established during phase I and phase II COBRE awards and will be extended in COBRE III. We propose four specific aims for COBRE III: i) to develop state-of-the-art self-sustained research instrumentation cores (Nuclear Magnetic Resonance;Mass Spectrometry and Surface Characterization;Microscopy and Mechanical Testing;and Computational Modeling) that will be integrated into campus-wide infrastructure;ii) to establish a pilot research subproject program that will enable the PIs to initiate new research directions, to bring new junior investigators to the COBRE program, and to promote new collaborations;iii) to establish COBRE-supported symposia and meetings (an annual research and coordination retreat, and co-sponsored lectures in biomaterials);and iv) to establish a COBRE faculty mentoring program.
These aims will further the development of a cadre of NIH ROI funded investigators whose cutting-edge biomaterial research programs will provide continuing support for the core facilities that are a crucial for regenerative medicine research at the University of Delaware.

Public Health Relevance

The objective of our COBRE research is the molecular design of advanced biomaterials to address societal needs, including those for regeneration of liver and vocal fold tissues, for drug-lead identification, and payload delivery. This research, by a multi-disciplinary team of researchers from basic and translational science backgrounds, will be extended and deepened in COBRE Phase III.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-TWD-C (C3))
Program Officer
Canto, Maria Teresa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Delaware
Schools of Arts and Sciences
United States
Zip Code
McGann, Christopher L; Akins, Robert E; Kiick, Kristi L (2016) Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure. Biomacromolecules 17:128-40
Lu, Xingyu; Zhang, Huilan; Lu, Manman et al. (2016) Improving dipolar recoupling for site-specific structural and dynamics studies in biosolids NMR: windowed RN-symmetry sequences. Phys Chem Chem Phys 18:4035-44
DeAngelis, Andrew; Panish, Robert; Fox, Joseph M (2016) Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration. Acc Chem Res 49:115-27
Ravikrishnan, Anitha; Ozdemir, Tugba; Bah, Mohamed et al. (2016) Regulation of Epithelial-to-Mesenchymal Transition Using Biomimetic Fibrous Scaffolds. ACS Appl Mater Interfaces 8:17915-26
Williams, Mackenzie G; Teplyakov, Andrew V (2016) Building High-Coverage Monolayers of Covalently Bound Magnetic Nanoparticles. Appl Surf Sci 388:461-467
Li, Linqing; Mahara, Atsushi; Tong, Zhixiang et al. (2016) Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications. Adv Healthc Mater 5:266-75
Zhang, Huilan; Hou, Guangjin; Lu, Manman et al. (2016) HIV-1 Capsid Function is Regulated by Dynamics: Quantitative Atomic-Resolution Insights by Integrating Magic-Angle-Spinning NMR, QM/MM, and MD. J Am Chem Soc :
Rehmann, Matthew S; Luna, Jesus I; Maverakis, Emanual et al. (2016) Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation. J Biomed Mater Res A 104:1162-74
Liang, Yingkai; Kiick, Kristi L (2016) Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules. Biomacromolecules 17:601-14
Panish, Robert A; Chintala, Srinivasa R; Fox, Joseph M (2016) A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B. Angew Chem Int Ed Engl 55:4983-7

Showing the most recent 10 out of 71 publications