The morphological characteristics and the mechanical properties of advanced biomaterials are the determining factors for their successful applications in drug delivery and tissue engineering applications. In drug delivery, the morphology and the mechanical properties of synthetic biomaterials determine the tissue distribution and the ultimate fate of the drug carriers. Depending on the shape, size and porosity of polymeric particles, the kinetics and the mechanisms of cellular internationalization can be dramatically different. In the context of tissue engineering, the structures of scaffolding materials, from the molecular level to the macroscopic scale, determine the mechanical properties, solute diffusion and cell-matrix interactions. Indeed, Nature modulates the mechanical properties of biological tissues by subtle adjustments of its composition with a perceivable alteration of its nanoscale organization. Recent studies have confirmed the effects of matrix stiffness in controlling cell morphology, adhesion, proliferation and differentiation. An interesting new development in recent years is the alteration of materials structures in response to the applied chemical signals and mechanical stress and how these stimuli can be used to manipulate the spatial distribution of biological signals. The Microscopy and Mechanical Testing (MMT) Core, equipped with stateof- the-art imaging techniques, scattering tools and mechanical testing capabilities, is designed to answer these important questions. The MMT Core was established during previous COBRE funding years and will be strengthened and maintained by our COBRE team through new method developments. The MMT Core will be developed in two steps. The initial phase (years 1-3) focuses on cultivating user groups, facility development and staff training, leading to the mature phase (years 4-5 &beyond) where the Core will be self- sustained with user-fees.

Public Health Relevance

The ability to develop advanced biomaterials with customized control over morphological, mechanical and biological properties will lead to significant advancement in biomedical fields. The MMT Core will provide advanced characterization capabilities to help COBRE researchers gain fundamental understanding of structure-property relationship of their materials in the context of specific cellular and tissue environment. These studies will ultimately generate materials systems that are optimized for their targeted drug delivery and tissue engineering applications.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-TWD-C (C3))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Delaware
United States
Zip Code
McGann, Christopher L; Akins, Robert E; Kiick, Kristi L (2016) Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure. Biomacromolecules 17:128-40
Lu, Xingyu; Zhang, Huilan; Lu, Manman et al. (2016) Improving dipolar recoupling for site-specific structural and dynamics studies in biosolids NMR: windowed RN-symmetry sequences. Phys Chem Chem Phys 18:4035-44
DeAngelis, Andrew; Panish, Robert; Fox, Joseph M (2016) Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration. Acc Chem Res 49:115-27
Ravikrishnan, Anitha; Ozdemir, Tugba; Bah, Mohamed et al. (2016) Regulation of Epithelial-to-Mesenchymal Transition Using Biomimetic Fibrous Scaffolds. ACS Appl Mater Interfaces 8:17915-26
Williams, Mackenzie G; Teplyakov, Andrew V (2016) Building High-Coverage Monolayers of Covalently Bound Magnetic Nanoparticles. Appl Surf Sci 388:461-467
Li, Linqing; Mahara, Atsushi; Tong, Zhixiang et al. (2016) Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications. Adv Healthc Mater 5:266-75
Zhang, Huilan; Hou, Guangjin; Lu, Manman et al. (2016) HIV-1 Capsid Function is Regulated by Dynamics: Quantitative Atomic-Resolution Insights by Integrating Magic-Angle-Spinning NMR, QM/MM, and MD. J Am Chem Soc :
Rehmann, Matthew S; Luna, Jesus I; Maverakis, Emanual et al. (2016) Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation. J Biomed Mater Res A 104:1162-74
Liang, Yingkai; Kiick, Kristi L (2016) Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules. Biomacromolecules 17:601-14
Panish, Robert A; Chintala, Srinivasa R; Fox, Joseph M (2016) A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B. Angew Chem Int Ed Engl 55:4983-7

Showing the most recent 10 out of 71 publications