The morphological characteristics and the mechanical properties of advanced biomaterials are the determining factors for their successful applications in drug delivery and tissue engineering applications. In drug delivery, the morphology and the mechanical properties of synthetic biomaterials determine the tissue distribution and the ultimate fate of the drug carriers. Depending on the shape, size and porosity of polymeric particles, the kinetics and the mechanisms of cellular internationalization can be dramatically different. In the context of tissue engineering, the structures of scaffolding materials, from the molecular level to the macroscopic scale, determine the mechanical properties, solute diffusion and cell-matrix interactions. Indeed, Nature modulates the mechanical properties of biological tissues by subtle adjustments of its composition with a perceivable alteration of its nanoscale organization. Recent studies have confirmed the effects of matrix stiffness in controlling cell morphology, adhesion, proliferation and differentiation. An interesting new development in recent years is the alteration of materials structures in response to the applied chemical signals and mechanical stress and how these stimuli can be used to manipulate the spatial distribution of biological signals. The Microscopy and Mechanical Testing (MMT) Core, equipped with stateof- the-art imaging techniques, scattering tools and mechanical testing capabilities, is designed to answer these important questions. The MMT Core was established during previous COBRE funding years and will be strengthened and maintained by our COBRE team through new method developments. The MMT Core will be developed in two steps. The initial phase (years 1-3) focuses on cultivating user groups, facility development and staff training, leading to the mature phase (years 4-5 & beyond) where the Core will be self- sustained with user-fees.

Public Health Relevance

The ability to develop advanced biomaterials with customized control over morphological, mechanical and biological properties will lead to significant advancement in biomedical fields. The MMT Core will provide advanced characterization capabilities to help COBRE researchers gain fundamental understanding of structure-property relationship of their materials in the context of specific cellular and tissue environment. These studies will ultimately generate materials systems that are optimized for their targeted drug delivery and tissue engineering applications.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM110758-03
Application #
9117577
Study Section
Special Emphasis Panel (ZGM1-TWD-C)
Project Start
Project End
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
3
Fiscal Year
2016
Total Cost
$63,743
Indirect Cost
$22,882
Name
University of Delaware
Department
Type
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Li, Linqing; Stiadle, Jeanna M; Levendoski, Elizabeth E et al. (2018) Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 106:2229-2242
Liao, Jennie; Guan, Weiye; Boscoe, Brian P et al. (2018) Transforming Benzylic Amines into Diarylmethanes: Cross-Couplings of Benzylic Pyridinium Salts via C-N Bond Activation. Org Lett 20:3030-3033
Lu, Manman; Sarkar, Sucharita; Wang, Mingzhang et al. (2018) 19F Magic Angle Spinning NMR Spectroscopy and Density Functional Theory Calculations of Fluorosubstituted Tryptophans: Integrating Experiment and Theory for Accurate Determination of Chemical Shift Tensors. J Phys Chem B 122:6148-6155
Ovadia, Elisa M; Colby, David W; Kloxin, April M (2018) Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells. Biomater Sci 6:1358-1370
Kraus, Jodi; Gupta, Rupal; Yehl, Jenna et al. (2018) Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations. J Phys Chem B 122:2931-2939
Williams, Mackenzie G; Teplyakov, Andrew V (2018) Indirect photopatterning of functionalized organic monolayers via copper-catalyzed ""click chemistry"". Appl Surf Sci 447:535-541
Quinn, Caitlin M; Wang, Mingzhang; Polenova, Tatyana (2018) NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology. Methods Mol Biol 1688:1-35
Bush, Timothy S; Yap, Glenn P A; Chain, William J (2018) Transformation of N, N-Dimethylaniline N-Oxides into Diverse Tetrahydroquinoline Scaffolds via Formal Povarov Reactions. Org Lett 20:5406-5409
Hadden, Jodi A; Perilla, Juan R (2018) All-atom virus simulations. Curr Opin Virol 31:82-91
Liu, Jun; Cheng, Rujin; Wu, Haifan et al. (2018) Building and Breaking Bonds via a Compact S-Propargyl-Cysteine to Chemically Control Enzymes and Modify Proteins. Angew Chem Int Ed Engl 57:12702-12706

Showing the most recent 10 out of 177 publications