We propose to build on the success of COBRE phase I and phase II awards to establish four research cores that will provide the infrastructure to take our Center to the next level. In addition, COBRE III will provide a mechanism for pilot research projects to continue to develop vibrant teams of investigators in biomaterials research. Significant biomedical therapies are likely to emerge from novel biomaterials that are designed at the molecular level to offer customized control over mechanical and biological properties. The realization of such biomaterials requires synergy between diverse research communities of organic chemistry, molecular design, biochemistry, biology, biophysical chemistry, and materials engineering. Collaborations between an outstanding group of junior, mid-career and senior investigators spanning multiple units across campus were established during phase I and phase II COBRE awards and will be extended in COBRE III. We propose four specific aims for COBRE III: i) to develop state-of-the-art self-sustained research instrumentation cores (Nuclear Magnetic Resonance; Mass Spectrometry and Surface Characterization; Microscopy and Mechanical Testing; and Computational Modeling) that will be integrated into campus-wide infrastructure; ii) to establish a pilot research subproject program that will enable the PIs to initiate new research directions, to bring new junior investigators to the COBRE program, and to promote new collaborations; iii) to establish COBRE-supported symposia and meetings (an annual research and coordination retreat, and co-sponsored lectures in biomaterials); and iv) to establish a COBRE faculty mentoring program.
These aims will further the development of a cadre of NIH ROI funded investigators whose cutting-edge biomaterial research programs will provide continuing support for the core facilities that are a crucial for regenerative medicine research at the University of Delaware.

Public Health Relevance

The objective of our COBRE research is the molecular design of advanced biomaterials to address societal needs, including those for regeneration of liver and vocal fold tissues, for drug-lead identification, and payload delivery. This research, by a multi-disciplinary team of researchers from basic and translational science backgrounds, will be extended and deepened in COBRE Phase III.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM110758-05
Application #
9536907
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Gorospe, Rafael
Project Start
2014-09-30
Project End
2019-07-31
Budget Start
2018-08-01
Budget End
2019-07-31
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Delaware
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Burch, Jason M; Mashayekh, Siavash; Wykoff, Dennis D et al. (2018) Bacterial Derived Carbohydrates Bind Cyr1 and Trigger Hyphal Growth in Candida albicans. ACS Infect Dis 4:53-58
O'Brien, Jessica G K; Chintala, Srinivasa R; Fox, Joseph M (2018) Stereoselective Synthesis of Bicyclo[6.1.0]nonene Precursors of the Bioorthogonal Reagents s-TCO and BCN. J Org Chem 83:7500-7503
McDonald, Nathan D; DeMeester, Kristen E; Lewis, Amanda L et al. (2018) Structural and functional characterization of a modified legionaminic acid involved in glycosylation of a bacterial lipopolysaccharide. J Biol Chem 293:19113-19126
Guan, Weiye; Liao, Jennie; Watson, Mary P (2018) Vinylation of Benzylic Amines via C-N Bond Functionalization of Benzylic Pyridinium Salts. Synthesis (Stuttg) 50:3231-3237
Hadden, Jodi A; Perilla, Juan R (2018) Molecular Dynamics Simulations of Protein-Drug Complexes: A Computational Protocol for Investigating the Interactions of Small-Molecule Therapeutics with Biological Targets and Biosensors. Methods Mol Biol 1762:245-270
Haider, Michael J; Zhang, Huixi Violet; Sinha, Nairiti et al. (2018) Self-assembly and soluble aggregate behavior of computationally designed coiled-coil peptide bundles. Soft Matter 14:5488-5496
Quinn, Caitlin M; Wang, Mingzhang; Fritz, Matthew P et al. (2018) Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5? identified by magic-angle spinning NMR and molecular dynamics simulations. Proc Natl Acad Sci U S A 115:11519-11524
Fang, Yinzhi; Zhang, Han; Huang, Zhen et al. (2018) Photochemical syntheses, transformations, and bioorthogonal chemistry of trans-cycloheptene and sila trans-cycloheptene Ag(i) complexes. Chem Sci 9:1953-1963
Potocny, Andrea M; Riley, Rachel S; O'Sullivan, Rachel K et al. (2018) Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex displaying an Exceptionally High Phototoxicity Index. Inorg Chem 57:10608-10615
Hadden, Jodi A; Perilla, Juan R; Schlicksup, Christopher John et al. (2018) All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. Elife 7:

Showing the most recent 10 out of 177 publications