REGULATORY MECHANISMS OF RAC-DEPENDENT DENDRITIC DEVELOPMENT AND PLASTICITY ABSTRACT Formation of a functional nervous system requires the proper development and remodeling of dendrites and dendritic spines, the primary sites of excitatory synapses in the brain. Rho family GTPases play critical roles in regulating these processes. In particular, the Rho GTPase Rac promotes dendritic arborization and the formation and maintenance of spines. Precise spatio-temporal regulation of Rac activity is essential for its function, since aberrant Rac signaling results in dendrite and spine abnormalities and cognitive disorders including mental retardation. Despite its importance, the mechanisms that regulate Rac signaling in neurons remain pooriy understood. We previously identified the Rac-specific activator Tiami as a critical regulator of dendrite, spine, and synapse development. We demonstrated that Tiami mediates both NMDA receptor-and EphB receptor-dependent spine development by coupling these receptors to Rac signaling pathways that control actin cytoskeletal remodeling and protein synthesis. Recently, we have also identified the Rac-specific inhibitor Bcr as a Tiami-interacting protein that blocks Tiami-induced Rac activation and actin remodeling. Overexpression and knockout experiments indicate that Bcr restricts the formation and growth of spines and dendrites. The complex between Tiami and Bcr may serve as an """"""""on-off switch"""""""" for precisely regulating Rac signaling in neurons, which is essential for the proper formation and remodeling of spines, synapses, and dendrites. To test this hypothesis, we propose the following specific aims: 1) to determine the role of Bcr in restricting synapse development and dendritic growth;2) to identify the mechanisms by which EphB and NMDA receptors regulate the Tiami-Bcr complex, and determine the consequences on Rac activation and synapse development;and 3) to elucidate the role of the Tiami-Bcr complex in regulating N-cadherinmediated synaptic adhesion. To address these questions, we will use a multifaceted approach employing a combination of molecular, cellular, biochemical, and high-resolution imaging techniques. Results from the proposed studies will provide critical insight into the fundamental mechanisms that regulate Rac activation and Rac-dependent synaptic and dendritic development in neurons, and help to elucidate how disruptions in Rac GTPase signaling give rise to cognitive disorders such as mental retardation.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Center Core Grants (P30)
Project #
5P30HD024064-24
Application #
8382019
Study Section
Special Emphasis Panel (ZHD1-MRG-C)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
24
Fiscal Year
2012
Total Cost
$144,736
Indirect Cost
$37,595
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Lanzieri, T M; Leung, J; Caviness, A C et al. (2017) Long-term outcomes of children with symptomatic congenital cytomegalovirus disease. J Perinatol 37:875-880
Duran, Ivan; Martin, Jorge H; Weis, Mary Ann et al. (2017) A Chaperone Complex Formed by HSP47, FKBP65, and BiP Modulates Telopeptide Lysyl Hydroxylation of Type I Procollagen. J Bone Miner Res 32:1309-1319
Fountain, Michael D; Aten, Emmelien; Cho, Megan T et al. (2017) The phenotypic spectrum of Schaaf-Yang syndrome: 18 new affected individuals from 14 families. Genet Med 19:45-52
Jiang, Xiqian; Chen, Jianwei; Baji?, Aleksandar et al. (2017) Quantitative real-time imaging of glutathione. Nat Commun 8:16087
Jin, Haoxing Douglas; Demmler-Harrison, Gail J; Coats, David K et al. (2017) Long-term Visual and Ocular Sequelae in Patients With Congenital Cytomegalovirus Infection. Pediatr Infect Dis J 36:877-882
Liu, Pengfei; Yuan, Bo; Carvalho, Claudia M B et al. (2017) An Organismal CNV Mutator Phenotype Restricted to Early Human Development. Cell 168:830-842.e7
Machol, Keren; Jain, Mahim; Almannai, Mohammed et al. (2017) Corner fracture type spondylometaphyseal dysplasia: Overlap with type II collagenopathies. Am J Med Genet A 173:733-739
Lee, Chae Syng; Fu, He; Baratang, Nissan et al. (2017) Mutations in Fibronectin Cause a Subtype of Spondylometaphyseal Dysplasia with ""Corner Fractures"". Am J Hum Genet 101:815-823
Beaudet, Arthur L (2017) Brain carnitine deficiency causes nonsyndromic autism with an extreme male bias: A hypothesis. Bioessays 39:
Mulherkar, Shalaka; Firozi, Karen; Huang, Wei et al. (2017) RhoA-ROCK Inhibition Reverses Synaptic Remodeling and Motor and Cognitive Deficits Caused by Traumatic Brain Injury. Sci Rep 7:10689

Showing the most recent 10 out of 702 publications