Confocal microscopy complements the work of most BCM-IDDRC investigators whose work entails analysis and description of protein distribution within cells or tissues. Among the specific strengths of this system are the capacity to use multiple markers concurrently and the ability to study the three-dimensional character of one or several related proteins with sub-cellular resolution. For members of the BCM-IDDRC, the three confocal systems have facilitated discovery and elucidation of genes involved in human disorders such as Rett and SCA1, functional analyses of genes including Mathi, Mecp2, Ataxin, Gfi-1, shar-pei, APP, VAP-33A, endophilin, crumbs, hrs, CSP, atonal, syntaxin, senseless, neurexin, ROP, discs lost, skittles, gutfeeling, synaptobrevin, synaptotagmin, apterous, Dpp and protein structure/function studies of potassium channel domains. These and similar studies have involved thirteen BCM-IDDRC laboratories on an ongoing basis and nine other BCM-IDDRC laboratories on an occasional basis. Cost Effectiveness: The original cost of the two Zeiss confocal microscope systems and related equipment was approximately $1.2 million. Operating costs per year including primarily service contracts, salary costs for user training and day to day maintenance and technical support of histological services are currrently approximately $128,000. Very few BCM-IDDRC laboratories could individually justify either the expense of purchasing and maintaining any one of the confocal systems or would fully utilize the full capacity of a single system. Quality Assurance: All of the microscopes in the Confocal core were purchase new, were under warranties during the first year and have since been continuously under service contracts with the manufacturers to assure all systems meet or exceed performance quality requirements. Preventative maintenance of the equipment includes regular cleaning of user inaccessible portions of the microscope systems and revision of microscope software as needed. Where feasible, we have in the past and will continue to improve the software and hardware associated with the microscopes to provide additional features, attain better equipment performance, and better meet new or changing user and regulatory requirements. The microscopes are observed on a daily basis and user serviceable portions of the systems are examined, aligned, cleaned and repaired on a regular basis by the core manager. Most of our users experience their initial use of Confocal microscopy using our equipment and training to obtain optimal images from the equipment is a significant component of quality. Each of our new users is provided with at least two hours of individual hands-on training with the core manager followed by required solo sessions and ongoing support as needed. F. UTILIZATION The confocal microscopy core will provide training, equipment and technical support to any BCM-IDDRC investigator who would benefit from use of the confocal microscope systems. We expect that BCM-IDDRC users will continue to benefit from the preferential access to the systems and because of the favorable fee structure in comparison with available alternatives

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-MRG-C)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
United States
Zip Code
Itami, Chiaki; Huang, Jui-Yen; Yamasaki, Miwako et al. (2016) Developmental Switch in Spike Timing-Dependent Plasticity and Cannabinoid-Dependent Reorganization of the Thalamocortical Projection in the Barrel Cortex. J Neurosci 36:7039-54
Herrera, José A; Ward, Christopher S; Wehrens, Xander H T et al. (2016) Methyl-CpG binding-protein 2 function in cholinergic neurons mediates cardiac arrhythmogenesis. Hum Mol Genet :
Machol, Keren; Jain, Mahim; Almannai, Mohammed et al. (2016) Corner fracture type spondylometaphyseal dysplasia: Overlap with type II collagenopathies. Am J Med Genet A :
Grafe, Ingo; Alexander, Stefanie; Yang, Tao et al. (2016) Sclerostin Antibody Treatment Improves the Bone Phenotype of Crtap(-/-) Mice, a Model of Recessive Osteogenesis Imperfecta. J Bone Miner Res 31:1030-40
Ure, Kerstin; Lu, Hui; Wang, Wei et al. (2016) Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. Elife 5:
Radtke-Schuller, Susanne; Schuller, Gerd; Angenstein, Frank et al. (2016) Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Struct Funct 221 Suppl 1:1-272
Fountain, Michael D; Aten, Emmelien; Cho, Megan T et al. (2016) The phenotypic spectrum of Schaaf-Yang syndrome: 18 new affected individuals from 14 families. Genet Med :
Patil, Vinit V; Guzman, Miguel; Carter, Angela N et al. (2016) Activation of extracellular regulated kinase and mechanistic target of rapamycin pathway in focal cortical dysplasia. Neuropathology 36:146-56
White, Janson; Beck, Christine R; Harel, Tamar et al. (2016) POGZ truncating alleles cause syndromic intellectual disability. Genome Med 8:3
Rajagopal, Abbhirami; Homan, Erica P; Joeng, Kyu Sang et al. (2016) Restoration of the serum level of SERPINF1 does not correct the bone phenotype in Serpinf1 null mice. Mol Genet Metab 117:378-82

Showing the most recent 10 out of 667 publications