This core will provide tissue culture and animal models for CHAIN investigators. The objectives of this core are to isolate and propagate primary human leukocytes (monocytes and peripheral blood lymphocytes and to provide rodent and primate models of CHAIN. Rigorous quality control measures are in place for this well integrated core. Primary human leukocytes will be fractionated into monocytes and lymphocytes from HIV-1, 2 and hepatitis B and C seronegative donors by centrifugal elutriation. Human glia (microglia and astrocytes) and/or neurons will be obtained from fetal tissues. The neurons and glia from human brain tissue will be purified, characterized and provided for experiments. These will provide data for common endpoints of disease. In toto, this 'cell, fissue, and animal core'will provide all the biological specimens necessary to address research objectives of the center research programs and utilize the carefully controlled specimens obtained through this infrastructure to invesfigate neural immunity and its links to CHAIN. The techniques in the Core as a whole will also support neuroimmunological studies relevant to microglial activation in CHAIN. The results obtained from this core will have direct applicability for determining the mechanisms and monitoring the course of HIV infection in its chronic stage. Our overriding goal is to assist CHAIN Pis and other researchers interested in neuroAIDS in determining and characterizing changes of CNS function as they develop in the various in vitro and in vivo models of neuroAIDS, and in exploring therapeutic potentials aiming at ameliorating or reversing such functional changes.

Public Health Relevance

This core will provide tissue culture and animal models for the center investigators. The objecfives are to isolate and propagate primary human cells and to provide established animal models of chronic HIV infection and aging. This core will provide all the biological specimens necessary to address research objectives of the center activities to investigate neural immunity and its links to NeuroAIDS, and thus vital component for achieving our overriding goal: To explore therapeutic potentials aiming at ameliorafing or reversing such functional changes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Center Core Grants (P30)
Project #
5P30MH062261-14
Application #
8629784
Study Section
Special Emphasis Panel (ZMH1-ERB-M)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
14
Fiscal Year
2014
Total Cost
$222,137
Indirect Cost
$72,550
Name
University of Nebraska Medical Center
Department
Type
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Hu, Guoku; Liao, Ke; Yang, Lu et al. (2017) Tat-Mediated Induction of miRs-34a & -138 Promotes Astrocytic Activation via Downregulation of SIRT1: Implications for Aging in HAND. J Neuroimmune Pharmacol 12:420-432
Stauch, Kelly L; Emanuel, Katy; Lamberty, Benjamin G et al. (2017) Central nervous system-penetrating antiretrovirals impair energetic reserve in striatal nerve terminals. J Neurovirol 23:795-807
Li, Weizhe; Gorantla, Santhi; Gendelman, Howard E et al. (2017) Systemic HIV-1 infection produces a unique glial footprint in humanized mouse brains. Dis Model Mech 10:1489-1502
Kevadiya, Bhavesh D; Bade, Aditya N; Woldstad, Christopher et al. (2017) Development of europium doped core-shell silica cobalt ferrite functionalized nanoparticles for magnetic resonance imaging. Acta Biomater 49:507-520
Araínga, Mariluz; Edagwa, Benson; Mosley, R Lee et al. (2017) A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy. Retrovirology 14:17
Sandkovsky, Uriel; Podany, Anthony T; Fletcher, Courtney V et al. (2017) Impact of efavirenz pharmacokinetics and pharmacogenomics on neuropsychological performance in older HIV-infected patients. J Antimicrob Chemother 72:200-204
Gnanadhas, Divya Prakash; Dash, Prasanta K; Sillman, Brady et al. (2017) Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs. J Clin Invest 127:857-873
Shahnaz, Gul; Edagwa, Benson J; McMillan, JoEllyn et al. (2017) Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis. Nanomedicine (Lond) 12:99-115
Edagwa, Benson; McMillan, JoEllyn; Sillman, Brady et al. (2017) Long-acting slow effective release antiretroviral therapy. Expert Opin Drug Deliv 14:1281-1291
Guo, Dongwei; Zhou, Tian; Araínga, Mariluz et al. (2017) Creation of a Long-Acting Nanoformulated 2',3'-Dideoxy-3'-Thiacytidine. J Acquir Immune Defic Syndr 74:e75-e83

Showing the most recent 10 out of 346 publications