Systems biology at its best tightly couples experimental biology with modeling methodologies. Experimental later keep the theories generated through computation realistic;carefully constructed mathematical models 'can generate new testable hypotheses. Achieving this balance, however, demands interdisciplinary collaborations such as set up in the CHAIN Center, and the experience and skills as available in this Core. The Systems Biology and Integrative Networks Core (SB-INC, aka Systems Biology Core) is to enable genome-scale technology and state-of-the-art bioinformatics tools for the study of neuroAIDS. CHAIN researchers can to collect or analyze genome-scale data though active collaboration with members of the SB-INC Available experimental platforms include RNA-seq, chlP-seq, and protein interaction screens via Y2H and M2H. Available bioinformatic technologies include clustering and classification of gene expression or metabolomic profiles, integration of molecular profiles with molecular networks, and identification of network-based biomarkers. SB-INC will also support research and development centered on combinatorial transcriptional interaction maps. We will map the transcripfional networks underlying developmental processes of high relevance to neuroAIDS, including neuronal degeneration and protection and activation and differentiation of macrophages. Through these methods we will develop network-based biomarkers to predict the potential for development of neuroAIDS, the presence of neuroAIDS, and response to treatment.

Public Health Relevance

Systems biology approaches are ideal for the analysis of complex systems such as chronic HIV infection and the brain. This Core provides world-class resources , skills, and experimental approaches for the study neuroAIDS.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Center Core Grants (P30)
Project #
5P30MH062261-14
Application #
8629788
Study Section
Special Emphasis Panel (ZMH1-ERB-M)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
14
Fiscal Year
2014
Total Cost
$200,864
Indirect Cost
Name
University of Nebraska Medical Center
Department
Type
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Olson, Katherine E; Bade, Aditya N; Namminga, Krista L et al. (2018) Persistent EcoHIV infection induces nigral degeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated mice. J Neurovirol 24:398-410
Hu, Guoku; Liao, Ke; Niu, Fang et al. (2018) Astrocyte EV-Induced lincRNA-Cox2 Regulates Microglial Phagocytosis: Implications for Morphine-Mediated Neurodegeneration. Mol Ther Nucleic Acids 13:450-463
Schutt, Charles R; Gendelman, Howard E; Mosley, R Lee (2018) Tolerogenic bone marrow-derived dendritic cells induce neuroprotective regulatory T cells in a model of Parkinson's disease. Mol Neurodegener 13:26
Sillman, Brady; Bade, Aditya N; Dash, Prasanta K et al. (2018) Creation of a long-acting nanoformulated dolutegravir. Nat Commun 9:443
Domingo-Almenara, Xavier; Montenegro-Burke, J Rafael; Benton, H Paul et al. (2018) Annotation: A Computational Solution for Streamlining Metabolomics Analysis. Anal Chem 90:480-489
Thomas, Midhun B; Gnanadhas, Divya Prakash; Dash, Prasanta K et al. (2018) Modulating cellular autophagy for controlled antiretroviral drug release. Nanomedicine (Lond) 13:2139-2154
Spooner, Rachel K; Wiesman, Alex I; Mills, Mackenzie S et al. (2018) Aberrant oscillatory dynamics during somatosensory processing in HIV-infected adults. Neuroimage Clin 20:85-91
Kiyota, Tomomi; Machhi, Jatin; Lu, Yaman et al. (2018) URMC-099 facilitates amyloid-? clearance in a murine model of Alzheimer's disease. J Neuroinflammation 15:137
Guijas, Carlos; Montenegro-Burke, J Rafael; Warth, Benedikt et al. (2018) Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol 36:316-320
Kevadiya, Bhavesh D; Woldstad, Christopher; Ottemann, Brendan M et al. (2018) Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution. Theranostics 8:256-276

Showing the most recent 10 out of 374 publications