Use of genetically engineered mice permits investigators to study the development and function of the nervous system in vivo and associate gene function with disease. To generate these mice, investigators must first design and construct complex knock-in, knock-out, reporter gene or transgenic constructs. This represents a major obstacle for many labs, particularly because these large DNA constructs are difficult to engineer using classic molecular cloning techniques. To overcome this obstacle, we established the BAG Engineering Technology Core (Core 3) at the UNC Neuroscience Center. BAG Engineering (also called Recombineering) is based upon a highly efficient phage-derived . Co// homologous recombination system to efficiently and precisely engineer large DMA constructs. Our core specifically uses the Lambda-RED cloning system (Copeland et al., 2001). In the 3 and !4 years since the core was established, we used the Lambda- RED system to generate a diverse array of DNA constructs for NINDS-funded investigators, including gene targeting constructs (knock-in / knock-out and Cre / LoxP based) and BAG transgenes (to epitope tag proteins in vivo, to direct the expression of GFP and CRE proteins in a tissue specific manner). The NIH-funded GENSAT project highlights the utility of using BAG transgenic mice to study nervous system function (Gong et al., 2003; Heintz, 2004).

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS045892-09
Application #
8374464
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
9
Fiscal Year
2012
Total Cost
$186,539
Indirect Cost
$60,499
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Sinnett, Sarah E; Hector, Ralph D; Gadalla, Kamal K E et al. (2017) Improved MECP2 Gene Therapy Extends the Survival of MeCP2-Null Mice without Apparent Toxicity after Intracisternal Delivery. Mol Ther Methods Clin Dev 5:106-115
McHenry, Jenna A; Otis, James M; Rossi, Mark A et al. (2017) Hormonal gain control of a medial preoptic area social reward circuit. Nat Neurosci 20:449-458
Decot, Heather K; Namboodiri, Vijay M K; Gao, Wei et al. (2017) Coordination of Brain-Wide Activity Dynamics by Dopaminergic Neurons. Neuropsychopharmacology 42:615-627
Hirsch, Matthew L; Conatser, Laura M; Smith, Sara M et al. (2017) AAV vector-meditated expression of HLA-G reduces injury-induced corneal vascularization, immune cell infiltration, and fibrosis. Sci Rep 7:17840
Dong, Enheng; Bachleda, Amelia; Xiong, Yubin et al. (2017) Reduced phosphoCREB in Müller glia during retinal degeneration in rd10 mice. Mol Vis 23:90-102
Otis, James M; Namboodiri, Vijay M K; Matan, Ana M et al. (2017) Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543:103-107
Bigler, Rebecca L; Kamande, Joyce W; Dumitru, Raluca et al. (2017) Messenger RNAs localized to distal projections of human stem cell derived neurons. Sci Rep 7:611
Guo, Jiami; Otis, James M; Higginbotham, Holden et al. (2017) Primary Cilia Signaling Shapes the Development of Interneuronal Connectivity. Dev Cell 42:286-300.e4
Irvin, David M; McNeill, Robert S; Bash, Ryan E et al. (2017) Intrinsic Astrocyte Heterogeneity Influences Tumor Growth in Glioma Mouse Models. Brain Pathol 27:36-50
McCoy, Eric S; Taylor-Blake, Bonnie; Aita, Megumi et al. (2017) Enhanced Nociception in Angelman Syndrome Model Mice. J Neurosci 37:10230-10239

Showing the most recent 10 out of 143 publications