Use of genetically engineered mice permits investigators to study the development and function of the nervous system in vivo and associate gene function with disease. To generate these mice, investigators must first design and construct complex knock-in, knock-out, reporter gene or transgenic constructs. This represents a major obstacle for many labs, particularly because these large DNA constructs are difficult to engineer using classic molecular cloning techniques. To overcome this obstacle, we established the BAG Engineering Technology Core (Core 3) at the UNC Neuroscience Center. BAG Engineering (also called Recombineering) is based upon a highly efficient phage-derived ?. Co// homologous recombination system to efficiently and precisely engineer large DMA constructs. Our core specifically uses the Lambda-RED cloning system (Copeland et al., 2001). In the 3 and !4 years since the core was established, we used the Lambda- RED system to generate a diverse array of DNA constructs for NINDS-funded investigators, including gene targeting constructs (knock-in / knock-out and Cre / LoxP based) and BAG transgenes (to epitope tag proteins in vivo, to direct the expression of GFP and CRE proteins in a tissue specific manner). The NIH-funded GENSAT project highlights the utility of using BAG transgenic mice to study nervous system function (Gong et al., 2003;Heintz, 2004).

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Burette, Alain C; Park, Haram; Weinberg, Richard J (2014) Postsynaptic distribution of IRSp53 in spiny excitatory and inhibitory neurons. J Comp Neurol 522:2164-78
Wright, Brittany D; Loo, Lipin; Street, Sarah E et al. (2014) The lipid kinase PIP5K1C regulates pain signaling and sensitization. Neuron 82:836-47
Huang, Hsien-Sung; Yoon, Bong-June; Brooks, Sherian et al. (2014) Snx14 regulates neuronal excitability, promotes synaptic transmission, and is imprinted in the brain of mice. PLoS One 9:e98383
Mabb, Angela M; Kullmann, Paul H M; Twomey, Margaret A et al. (2014) Topoisomerase 1 inhibition reversibly impairs synaptic function. Proc Natl Acad Sci U S A 111:17290-5
Zhu, Hu; Pleil, Kristen E; Urban, Daniel J et al. (2014) Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 39:1880-92
Demyanenko, Galina P; Mohan, Vishwa; Zhang, Xuying et al. (2014) Neural cell adhesion molecule NrCAM regulates Semaphorin 3F-induced dendritic spine remodeling. J Neurosci 34:11274-87
Larsen, Rylan S; Smith, Ikuko T; Miriyala, Jayalakshmi et al. (2014) Synapse-specific control of experience-dependent plasticity by presynaptic NMDA receptors. Neuron 83:879-93
McNeill, Robert S; Schmid, Ralf S; Bash, Ryan E et al. (2014) Modeling astrocytoma pathogenesis in vitro and in vivo using cortical astrocytes or neural stem cells from conditional, genetically engineered mice. J Vis Exp :
Gama, Vivian; Swahari, Vijay; Schafer, Johanna et al. (2014) The E3 ligase PARC mediates the degradation of cytosolic cytochrome c to promote survival in neurons and cancer cells. Sci Signal 7:ra67
Morgan-Smith, Meghan; Wu, Yaohong; Zhu, Xiaoqin et al. (2014) GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation. Elife 3:e02663

Showing the most recent 10 out of 54 publications