The pluripotency of ES cells, combined with their ease of genetic manipulation and selection, has revolutionized gene functional studies in vivo via the generation of transgenic, chimeric and knockout mice. New technologies are evolving that will make the ability to perform appropriate manipulations of ES cells even more important for the next generation of mouse mutants (Draper and Nagy, 2007). These include, for example, the combination of inducible recombinases (Cre and Flp) for regulated temporal and spatial ablation of genes, RNAi, and development of new techniques that accelerate generation of completely ES cell derived FO mice (i.e. tetraploid aggregation and laser-assisted injection). The main service of Core 4 is to provide to NINDS-funded Qualifying Investigators a high level of expertise in mouse ES cell targeting in order to permit the efficient generation of animal models for neurobiological research. In addition to ES cell electroporation and characterization, the staff of the Core 4 will work with the NINDS-funded investigators to establish and characterize ES cell lines from a number of genetic backgrounds (particularly C57BI/6) that allow mice to be generated on a pure genetic background. Finally, Core 4 will maintain a bank of genetically marked ES cell lines. The ES cells and mice generated from these lines will be used for in vivo lineage tracing and in vitro differentiation into neuronal and glial cell lines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS045892-10
Application #
8485512
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
10
Fiscal Year
2013
Total Cost
$114,361
Indirect Cost
$37,090
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Pearson, Brandon L; Simon, Jeremy M; McCoy, Eric S et al. (2016) Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat Commun 7:11173
Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K et al. (2016) Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination. Sci Rep 6:23568
Mabb, Angela M; Simon, Jeremy M; King, Ian F et al. (2016) Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms. PLoS One 11:e0156439
Pinto, Maria J; Alves, Pedro L; Martins, Luís et al. (2016) The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates. J Cell Biol 212:789-801
Yu, Chunxiu; Sellers, Kristin K; Radtke-Schuller, Susanne et al. (2016) Structural and functional connectivity between the lateral posterior-pulvinar complex and primary visual cortex in the ferret. Eur J Neurosci 43:230-44
Kim, Hyojin; Kunz, Portia A; Mooney, Richard et al. (2016) Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex. J Neurosci 36:4888-94
Jones, Kelly A; Han, Ji Eun; DeBruyne, Jason P et al. (2016) Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice. Sci Rep 6:28238
Crowley, Nicole A; Bloodgood, Daniel W; Hardaway, J Andrew et al. (2016) Dynorphin Controls the Gain of an Amygdalar Anxiety Circuit. Cell Rep 14:2774-83
Fox, Megan E; Bucher, Elizabeth S; Johnson, Justin A et al. (2016) Medullary Norepinephrine Projections Release Norepinephrine into the Contralateral Bed Nucleus of the Stria Terminalis. ACS Chem Neurosci 7:1681-1689
Stirman, Jeffrey N; Smith, Ikuko T; Kudenov, Michael W et al. (2016) Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat Biotechnol 34:857-62

Showing the most recent 10 out of 125 publications