Small-molecule chemical probes are widely used as research tools to study biological function and disease mechanisms (Strausberg and Schreiber, 2003). Indeed, a major new initiative of the NIH Roadmap project has been the establishment of Molecular Libraries Screening Center Networks (MLSCN) (http://mli.nih.gov/mlscn/index.php). The goals of these centers are to provide academic researchers access to small molecule compound libraries that can be screened using high throughput robotics. Whole-genome RNAi-based libaries are also being used to identify genes involved in a variety of cellular pathways (Ashrafi et al., 2003;Friedman and Perrimon, 2006). However, a major limitation for most researchers is that their biological assays are not compatible or optimized for HTS. This has restricted access for many investigators as the screening centers accept only those assays that are already miniaturized for a multi-well format and shown to produce a robust and reproducible readout that can be quantified with HTS devices. Some considerations important for the development and validation of HTS assays (http://mli.nih.gov/mlscn/index.php) are that the assays should: 1) Be easy to automate with steps such as centrifugation, filtration and extraction avoided;2) Have demonstrated capability of working reproducibly in a 96-, 384-, or 1536-well plate format;3) Have signal of sufficient intensity with a signal-to-background ratio of at least 5 and a coefficient of variation (CV) below 10%;and 4) Have a Z'-factor value in the range of 0.5-1.0. These statistical values take into account both the assay signal dynamic range and the data variation (Zhang et al., 1999). The purpose of Core 6 is to facilitate the development of such assays for NINDS qualifying investigators such that the assays are validated for HTS.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS045892-10
Application #
8485514
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
10
Fiscal Year
2013
Total Cost
$82,300
Indirect Cost
$26,691
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Pearson, Brandon L; Simon, Jeremy M; McCoy, Eric S et al. (2016) Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat Commun 7:11173
Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K et al. (2016) Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination. Sci Rep 6:23568
Mabb, Angela M; Simon, Jeremy M; King, Ian F et al. (2016) Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms. PLoS One 11:e0156439
Pinto, Maria J; Alves, Pedro L; Martins, Luís et al. (2016) The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates. J Cell Biol 212:789-801
Yu, Chunxiu; Sellers, Kristin K; Radtke-Schuller, Susanne et al. (2016) Structural and functional connectivity between the lateral posterior-pulvinar complex and primary visual cortex in the ferret. Eur J Neurosci 43:230-44
Kim, Hyojin; Kunz, Portia A; Mooney, Richard et al. (2016) Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex. J Neurosci 36:4888-94
Jones, Kelly A; Han, Ji Eun; DeBruyne, Jason P et al. (2016) Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice. Sci Rep 6:28238
Crowley, Nicole A; Bloodgood, Daniel W; Hardaway, J Andrew et al. (2016) Dynorphin Controls the Gain of an Amygdalar Anxiety Circuit. Cell Rep 14:2774-83
Fox, Megan E; Bucher, Elizabeth S; Johnson, Justin A et al. (2016) Medullary Norepinephrine Projections Release Norepinephrine into the Contralateral Bed Nucleus of the Stria Terminalis. ACS Chem Neurosci 7:1681-1689
Stirman, Jeffrey N; Smith, Ikuko T; Kudenov, Michael W et al. (2016) Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat Biotechnol 34:857-62

Showing the most recent 10 out of 125 publications