&

Public Health Relevance

Recent establishment of the NIH-supported small-molecule screening centers provide an unprecedented opportunity for researchers at academic institutions to identify tool compounds and new therapeutics for diseases. Unfortunately, most neuroscientists lack the expertise and equipment needed to optimize and validate biological assays for high throughput screening (HTS), thus making it extremely difficult for neuroscientists to move their science in a translational direction. The main objective of the Translational Neuroscience Core (formerly called Assay Development Core) is to develop and validate high-throughput compatible assays that could facilitate discovery of new treatments for neurological diseases. Indeed, the key function of this Core is to enable individual investigators to utilize the small molecule library screening facilities available at. UNC and at NIH-funded facilities.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS045892-13
Application #
8978347
Study Section
Special Emphasis Panel (ZNS1-SRB-R)
Project Start
Project End
Budget Start
2015-12-01
Budget End
2016-11-30
Support Year
13
Fiscal Year
2016
Total Cost
$60,008
Indirect Cost
$20,529
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Song, Liujiang; Llanga, Telmo; Conatser, Laura M et al. (2018) Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Ther 25:402-414
Zhang, Jing; Wu, Tao; Simon, Jeremy et al. (2018) VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science 361:290-295
Boyer, Nicholas P; Monkiewicz, Caroline; Menon, Shalini et al. (2018) Mammalian TRIM67 Functions in Brain Development and Behavior. eNeuro 5:
Sidorov, Michael S; Judson, Matthew C; Kim, Hyojin et al. (2018) Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome. J Neurosci 38:2671-2682
Crowther, Andrew J; Lim, Szu-Aun; Asrican, Brent et al. (2018) An Adeno-Associated Virus-Based Toolkit for Preferential Targeting and Manipulating Quiescent Neural Stem Cells in the Adult Hippocampus. Stem Cell Reports 10:1146-1159
Allard, Denise E; Wang, Yan; Li, Jian Joel et al. (2018) Schwann cell-derived periostin promotes autoimmune peripheral polyneuropathy via macrophage recruitment. J Clin Invest 128:4727-4741
Yeh, Chia-Yu; Asrican, Brent; Moss, Jonathan et al. (2018) Mossy Cells Control Adult Neural Stem Cell Quiescence and Maintenance through a Dynamic Balance between Direct and Indirect Pathways. Neuron 99:493-510.e4
Thaxton, Courtney; Kloth, Alexander D; Clark, Ellen P et al. (2018) Common Pathophysiology in Multiple Mouse Models of Pitt-Hopkins Syndrome. J Neurosci 38:918-936
Guo, Jiami; Otis, James M; Higginbotham, Holden et al. (2017) Primary Cilia Signaling Shapes the Development of Interneuronal Connectivity. Dev Cell 42:286-300.e4
Judson, Matthew C; Burette, Alain C; Thaxton, Courtney L et al. (2017) Decreased Axon Caliber Underlies Loss of Fiber Tract Integrity, Disproportional Reductions in White Matter Volume, and Microcephaly in Angelman Syndrome Model Mice. J Neurosci 37:7347-7361

Showing the most recent 10 out of 158 publications