The purpose of UNC Neuroscience Center Research Cores is to enable breakthroughs in the treatment of neurological diseases. For the past nine years, this Center Grant has provided high level technical expertise and Core facilities supporting many NINDS-funded investigators at UNC-Chapel Hill, as well as other NIHfunded neuroscientists with projects related to NINDS priorities. The Cores have also supported numerous young investigators who have subsequently obtained NINDS or other NIH funding. Core services have focused on genomics, generation of mouse models, and confocal/multiphoton imaging. In the current funding period, we added an Assay Development Core that has provided our Center Cores with a key translational component. Access to state of the art techniques has allowed NINDS-funded and other neuroscientists to publish breakthrough research with strong translational relevance in the areas of neurogenetic diseases, brain development, pain, dopaminergic mechanisms, addiction, neuronal/glial interactions, and regulation of myelination. Our Center Grant has also facilitated the development of potential new treatments for Angelman Syndrome and chronic pain. UNC Neuroscience Research Cores have enjoyed strong institutional support with the UNC School of Medicine (SOM) continuously providing space to house the Cores, appropriate salary fractions for Faculty Directors, some salary support for research scientist Core Directors, and support for major equipment purchases during the past funding period. Further, our NINDS funded Cores leverage major investments that UNC has made in generation of animal models, massively parallel (next generation) sequencing, and highthroughput screening and chemical biology. For the competitive renewal, we will expand and enhance molecular services to support animal model generation and massively parallel sequencing. We request support for a Bioinformatics Core rather than for continued operation of an Affymetrix facility. Affymetrix services are now self-sufficient and will be taken over by the UNC School of Medicine. We propose enhancement and continued operation of our Confocal and Multiphoton Imaging Core. Our assay development core has been improved and renamed Translational Neuroscience. These Cores will support 15 NINDS-funded projects, projects of 13 other NIH - funded neuroscientists, and 7 young investigators who do not yet have R01 funding. As a group UNC Neuroscience Center Research Cores will allow NINDS-funded and other UNC neuroscientists seamlessly to generate mice for studies of fundamental mechanisms or disease process, perform state of the art imaging and bioinformatics analysis on these models, and finally to develop assays that can be used to advance new treatments for neurological diseases.

Public Health Relevance

'UNC Neuroscience Center Research Cores' will enable breakthroughs in the treatment of neurological diseases. We request support for four Core facilities that will allow UNC neuroscientists to generate mice for studies of disease mechanisms, perform state of the art imaging and bioinformatics analysis on these models, and finally to develop assays that can be used to advance new treatments for neurological diseases.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Stewart, Randall R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Schools of Medicine
Chapel Hill
United States
Zip Code
Pearson, Brandon L; Simon, Jeremy M; McCoy, Eric S et al. (2016) Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat Commun 7:11173
Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K et al. (2016) Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination. Sci Rep 6:23568
Mabb, Angela M; Simon, Jeremy M; King, Ian F et al. (2016) Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms. PLoS One 11:e0156439
Pinto, Maria J; Alves, Pedro L; Martins, Luís et al. (2016) The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates. J Cell Biol 212:789-801
Yu, Chunxiu; Sellers, Kristin K; Radtke-Schuller, Susanne et al. (2016) Structural and functional connectivity between the lateral posterior-pulvinar complex and primary visual cortex in the ferret. Eur J Neurosci 43:230-44
Kim, Hyojin; Kunz, Portia A; Mooney, Richard et al. (2016) Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex. J Neurosci 36:4888-94
Jones, Kelly A; Han, Ji Eun; DeBruyne, Jason P et al. (2016) Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice. Sci Rep 6:28238
Crowley, Nicole A; Bloodgood, Daniel W; Hardaway, J Andrew et al. (2016) Dynorphin Controls the Gain of an Amygdalar Anxiety Circuit. Cell Rep 14:2774-83
Fox, Megan E; Bucher, Elizabeth S; Johnson, Justin A et al. (2016) Medullary Norepinephrine Projections Release Norepinephrine into the Contralateral Bed Nucleus of the Stria Terminalis. ACS Chem Neurosci 7:1681-1689
Stirman, Jeffrey N; Smith, Ikuko T; Kudenov, Michael W et al. (2016) Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat Biotechnol 34:857-62

Showing the most recent 10 out of 125 publications