The purpose of ?UNC Neuroscience Center Research Cores? (P30 NS045892-14) is to provide NINDS-funded and other NINDS-priority investigators with research capabilities that cannot be supported or sustained by individual laboratories. For the past 13 years, the Cores funded by NS045892 supported almost all NINDS- funded research at the UNC?Chapel Hill School of Medicine. During this time, UNC neuroscientists utilized these Cores to facilitate breakthrough discoveries in NINDS priority areas of neurogenetics, pain, neurodegeneration, and systems neuroscience. For our competitive renewal, we propose two Cores: Microscopy and Bioinformatics. We regularly upgraded our Microscopy Core to take advantage of increased sensitivity, scanning speeds, tiling capabilities, and now super-resolution capabilities. In addition to a Zeiss LSM 780 and other scopes, our Microscopy Core will house a new Zeiss LSM 880 with Airyscan and Fast module. The Core will also provide IT infrastructure and a pipeline for computationally intensive image processing and analysis of light sheet microscopy data. For the Bioinformatics Core, we will fund two bioinformaticians to analyze high-throughput sequencing (HTS) data, including exome and genome sequencing, bulk and single-cell RNA-seq, bulk and single-cell ATAC-seq, Hi-C, and ChIP-seq data. Access to advanced microscopic imaging and bioinformatics support is essential to the performance of cutting- edge research in NINDS-priority areas. With continued support, our NINDS-funded and other NINDS-priority investigators will have their transformative ideas enabled via convenient and affordable access to these key technologies.

Public Health Relevance

?UNC Neuroscience Center Research Cores? (P30 NS045892-14) supports almost all NINDS-funded research at the UNC?Chapel Hill School of Medicine. We request continued support for Cores that provide cutting edge resources in Microscopy and Bioinformatics. These Cores provide the tools that our NINDS-funded investigators need to conduct research directed at curing neurological diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
2P30NS045892-15
Application #
9432945
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Stewart, Randall R
Project Start
2003-07-01
Project End
2021-11-30
Budget Start
2017-12-15
Budget End
2018-11-30
Support Year
15
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Physiology
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Sinnett, Sarah E; Hector, Ralph D; Gadalla, Kamal K E et al. (2017) Improved MECP2 Gene Therapy Extends the Survival of MeCP2-Null Mice without Apparent Toxicity after Intracisternal Delivery. Mol Ther Methods Clin Dev 5:106-115
McHenry, Jenna A; Otis, James M; Rossi, Mark A et al. (2017) Hormonal gain control of a medial preoptic area social reward circuit. Nat Neurosci 20:449-458
Decot, Heather K; Namboodiri, Vijay M K; Gao, Wei et al. (2017) Coordination of Brain-Wide Activity Dynamics by Dopaminergic Neurons. Neuropsychopharmacology 42:615-627
Hirsch, Matthew L; Conatser, Laura M; Smith, Sara M et al. (2017) AAV vector-meditated expression of HLA-G reduces injury-induced corneal vascularization, immune cell infiltration, and fibrosis. Sci Rep 7:17840
Dong, Enheng; Bachleda, Amelia; Xiong, Yubin et al. (2017) Reduced phosphoCREB in Müller glia during retinal degeneration in rd10 mice. Mol Vis 23:90-102
Otis, James M; Namboodiri, Vijay M K; Matan, Ana M et al. (2017) Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543:103-107
Bigler, Rebecca L; Kamande, Joyce W; Dumitru, Raluca et al. (2017) Messenger RNAs localized to distal projections of human stem cell derived neurons. Sci Rep 7:611
Guo, Jiami; Otis, James M; Higginbotham, Holden et al. (2017) Primary Cilia Signaling Shapes the Development of Interneuronal Connectivity. Dev Cell 42:286-300.e4
Irvin, David M; McNeill, Robert S; Bash, Ryan E et al. (2017) Intrinsic Astrocyte Heterogeneity Influences Tumor Growth in Glioma Mouse Models. Brain Pathol 27:36-50
McCoy, Eric S; Taylor-Blake, Bonnie; Aita, Megumi et al. (2017) Enhanced Nociception in Angelman Syndrome Model Mice. J Neurosci 37:10230-10239

Showing the most recent 10 out of 143 publications