This proposal is to continue the NINDS Center Core for Brain Imaging (NCCBI) at Washington University. During its five years of operation, the NCCBI has become an integral resource for the University's neuroscience community, and during this time, imaging research has continued to evolve. Neuroimaging studies have become more expansive in terms of the number of research subjects involved, the types of image acquisitions utilized in protocols, the diversity of non-imaging measures that are included, and the extent of image post-processing and analysis that is conducted. The goal of the Center in the next funding cycle is to support the evolving practices of the University's neuroimaging community. The Center will achieve the following specific aims: 1. We will facilitate high throughput, highly interdisciplinary neuroimaging research. A software and hardware infrastructure will be deployed that will unify the imaging facilities, informational resources, and analytic capabilities into an organized and secure research platform. Key components will include DICOM data exchange services, an XNAT-based imaging informatics system, and integrated automated analysis pipelines. This infrastructure will be backed with expert consultation services, comprehensive documentation, and an extensive training program. 2. We will facilitate the transition of emergent imaging and analysis methods into production-grade research assets. A set of imaging methods have been identified that have associated analysis methods that are at various stages in the development pipelines, including anatomic MRI;diffusion tensor imaging;positron emission tomography studies of flow, metabolism and radioligand binding;arterial spin labeling MRI;and quantitative blood oxygen level dependent (BOLD) MRI. Through an iterative process of optimizing, automating, and documenting, we will speed the transition of these methods into investigator-friendly applications. Together these aims encapsulate a sweeping approach to supporting the University's neuroscience community by enabling the current state of the art practices and by advancing the next generation of groundbreaking practices. The NCCBI will include Administration, Informatics, and Analysis cores to achieve these aims.

Public Health Relevance

Neuroimaging is one of the key methods used by biomedical researchers to study the brain in health and disease. The NINIDS Center Core for Brain Imaging provides core resources to investigators to facilitate their basic, translational, and clinical research into understanding neurological conditions and disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS048056-08
Application #
8197100
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Talley, Edmund M
Project Start
2004-04-01
Project End
2014-11-30
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
8
Fiscal Year
2012
Total Cost
$746,460
Indirect Cost
$255,368
Name
Washington University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Su, Yi; Blazey, Tyler M; Snyder, Abraham Z et al. (2015) Partial volume correction in quantitative amyloid imaging. Neuroimage 107:55-64
Fagan, Anne M; Xiong, Chengjie; Jasielec, Mateusz S et al. (2014) Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer's disease. Sci Transl Med 6:226ra30
Black, Kevin J; Snyder, Abraham Z; Mink, Jonathan W et al. (2014) Spatial reorganization of putaminal dopamine D2-like receptors in cranial and hand dystonia. PLoS One 9:e88121
Goyal, Manu S; Hawrylycz, Michael; Miller, Jeremy A et al. (2014) Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab 19:49-57
Bauer, Adam Q; Kraft, Andrew W; Wright, Patrick W et al. (2014) Optical imaging of disrupted functional connectivity following ischemic stroke in mice. Neuroimage 99:388-401
Thomas, Jewell B; Brier, Matthew R; Bateman, Randall J et al. (2014) Functional connectivity in autosomal dominant and late-onset Alzheimer disease. JAMA Neurol 71:1111-22
Milchenko, Mikhail V; Rajderkar, Dhanashree; LaMontagne, Pamela et al. (2014) Comparison of perfusion- and diffusion-weighted imaging parameters in brain tumor studies processed using different software platforms. Acad Radiol 21:1294-303
Power, Jonathan D; Mitra, Anish; Laumann, Timothy O et al. (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320-41
Smyser, Christopher D; Snyder, Abraham Z; Shimony, Joshua S et al. (2013) Effects of white matter injury on resting state fMRI measures in prematurely born infants. PLoS One 8:e68098
Su, Yi; Arbelaez, Ana M; Benzinger, Tammie L S et al. (2013) Noninvasive estimation of the arterial input function in positron emission tomography imaging of cerebral blood flow. J Cereb Blood Flow Metab 33:115-21

Showing the most recent 10 out of 64 publications