In the last five years the NCCBI has supported the extensive expansion and documentation of a group of software tools termed the """"""""4dfp suite"""""""". These programs read and write image data in 4dfp (or 4-dimensional floating point) format (x, y, z, time). The 4dfp format for image data was initially defined at WU in 1996 and is very similar to the more recent NlfTI format (htpp://nifti.nimh.nih.gov) except for certain header structures. The 4dfp suite includes an extensive set of binary executables and shell scripts (running under UNIX or Linux) that perform critical image algebra and analysis operations, e.g., filtering, registration, masking, etc. We will offer users the option of having all appropriate data undergo preprocessing immediately upon arrival at the CNDA (e.g., conversion of the reconstructed data from DICOM to the format used by the analysis software). All preprocessing will be monitored by the Analysis Core staff. As directed by the Steering Committee, the 4dfp suite of preprocessing software will be enhanced and modified by the Analysis Core staff programmers as necessary to support the specific needs of investigators. In addition, while most of what follows in this proposal refers to 4dfp procedures, we will also support established external packages (e.g., SPM, FSL, Freesurfer, and AFNI). Finally, a major advantage for NCCBI users is that all executables invoked by NCCBI pipelines are also available to those expert users who choose to create their own scripts. While the objectives are extremely broad and movement on nearly all the goals listed above will begin in the first two years of this next funding cycle, the resources of the Analysis Core will be considerable, especially when the additional funds and resources to be provided by Washington University are considered. A strength of this Core will be the ability to identify value;in new imaging methods as they arrive in the field and with the recommendation of the Steering Committee, commit resources for implementing these methods in our portfolio. IN this way we believe that establishment of the NCCBI Analysis Core will substantially benefit neuroscience research at our institution. Many of our NINDS funded users, listed below, would otherwise have no practical means of expanding, or optimizing, research imaging within their research agenda. Other users more established in imaging will be able to greatly augment their science by expanding their imaging research in new directions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS048056-09
Application #
8386624
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
9
Fiscal Year
2013
Total Cost
$232,626
Indirect Cost
$79,582
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Roe, Catherine M; Babulal, Ganesh M; Stout, Sarah H et al. (2018) Using the A/T/N Framework to Examine Driving in Preclinical AD. Geriatrics (Basel) 3:
Su, Yi; Flores, Shaney; Hornbeck, Russ C et al. (2018) Utilizing the Centiloid scale in cross-sectional and longitudinal PiB PET studies. Neuroimage Clin 19:406-416
Roe, Catherine M; Ances, Beau M; Head, Denise et al. (2018) Incident cognitive impairment: longitudinal changes in molecular, structural and cognitive biomarkers. Brain 141:3233-3248
Lee, Seonjoo; Zimmerman, Molly E; Narkhede, Atul et al. (2018) White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer's disease. PLoS One 13:e0195838
Chhatwal, Jasmeer P; Schultz, Aaron P; Johnson, Keith A et al. (2018) Preferential degradation of cognitive networks differentiates Alzheimer's disease from ageing. Brain 141:1486-1500
Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank et al. (2018) Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer's disease. Brain 141:1186-1200
Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G et al. (2018) Tau Kinetics in Neurons and the Human Central Nervous System. Neuron 98:861-864
Gordon, Brian A; Blazey, Tyler M; Su, Yi et al. (2018) Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study. Lancet Neurol 17:241-250
Villeneuve, Sylvia; Vogel, Jacob W; Gonneaud, Julie et al. (2018) Proximity to Parental Symptom Onset and Amyloid-? Burden in Sporadic Alzheimer Disease. JAMA Neurol 75:608-619
Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G et al. (2018) Tau Kinetics in Neurons and the Human Central Nervous System. Neuron 97:1284-1298.e7

Showing the most recent 10 out of 155 publications