C2 Core B;Gene-Targeting/Viral Vector Core C2.1 Rationale. Active genetic manipulation of mice and viral targeting of protein expression in neural tissue have resulted in a revolution in the study of the nervous system. Although interpretation of experiments involving genetic manipulation of mice must be performed with care, the ability to monitor changes in the CNS in vivo upon modification of a single gene makes this technique an indispensable tool for modern inquiry in neurobiology. The usefulness of genetically altered mice will grow even further with increased use of genetargeted mice expressing proteins deficient for specific protein-protein interactions, conditional knockouts, BAC-transgenics and animals expressing externally-triggered neuronal switches. Use of viral vectors to acutely alter protein expression is a powerful technique complementary to genetic manipulation. The group of NINDS researchers at the UCD AMC is using a variety of genetically altered mice and viral vectors to study fundamental questions in neurobiology. Although we have access to a the transgenic facility of the Charles C Gates Regenerative Medicine and Stem Cell Biology Program to produce gene targeted mice, the point of entry is a finished transgenic vector or transfected ES cells (see Appendix, letter from Dr. Peter Koch). Moreover, if Core B did not exist ES clone screening by PCR and/or Southern blotting - all labor intensive procedures - would have to be performed by the individual investigator. For transgenic mice, several lines are obtained for each construct injected. These lines then need to be tested initially to see if they have integrated the exogenous DNA. Subsequently, analysis of appropriate tissue-specific transgene expression is necessary, as well as the analysis of germ-line transmission. These ES and transgenic studies all require skills in molecular biology and mouse husbandry that are not the areas of expertise of the majority of investigators. Likewise, construction and production of viral vectors also requires specific expertise that is not easily established in most laboratories individually. Core B provides these specialized services to RMNDC users.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
2P30NS048154-06A1
Application #
8214028
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2011-02-01
Budget End
2011-11-30
Support Year
6
Fiscal Year
2011
Total Cost
$250,429
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Sinnen, Brooke L; Bowen, Aaron B; Forte, Jeffrey S et al. (2017) Optogenetic Control of Synaptic Composition and Function. Neuron 93:646-660.e5
Soltys, John N; Meyer, Stephanie A; Schumann, Hannah et al. (2017) Determining the Spatial Relationship of Membrane-Bound Aquaporin-4 Autoantibodies by STED Nanoscopy. Biophys J 112:1692-1702
Goodell, Dayton J; Zaegel, Vincent; Coultrap, Steven J et al. (2017) DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific. Cell Rep 19:2231-2243
Moreno, Rosa L; Josey, Megan; Ribera, Angeles B (2017) Zebrafish In Situ Spinal Cord Preparation for Electrophysiological Recordings from Spinal Sensory and Motor Neurons. J Vis Exp :
Dittmer, Philip J; Wild, Angela R; Dell'Acqua, Mark L et al. (2017) STIM1 Ca2+ Sensor Control of L-type Ca2+-Channel-Dependent Dendritic Spine Structural Plasticity and Nuclear Signaling. Cell Rep 19:321-334
Gilmer, Jesse I; Person, Abigail L (2017) Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity. J Neurosci 37:12153-12166
Westacott, Matthew J; Ludin, Nurin W F; Benninger, Richard K P (2017) Spatially Organized ?-Cell Subpopulations Control Electrical Dynamics across Islets of Langerhans. Biophys J 113:1093-1108
Lam, Philip M; Carlsen, Jessica; González, Marco I (2017) A calpain inhibitor ameliorates seizure burden in an experimental model of temporal lobe epilepsy. Neurobiol Dis 102:1-10
McElroy, Pallavi B; Liang, Li-Ping; Day, Brian J et al. (2017) Scavenging reactive oxygen species inhibits status epilepticus-induced neuroinflammation. Exp Neurol 298:13-22
Westacott, Matthew J; Farnsworth, Nikki L; St Clair, Joshua R et al. (2017) Age-Dependent Decline in the Coordinated [Ca2+] and Insulin Secretory Dynamics in Human Pancreatic Islets. Diabetes 66:2436-2445

Showing the most recent 10 out of 118 publications