Core B Nanoscopy Super-resolution light microscopy or nanoscopy (i.e. microscopy with nanometer-scale resolution) is defined as imaging with a resolution below the diffraction limit of conventional light microscopy, which is ~200 nm in the equatorial (xy) and ~500 nm in the axial (z) dimension. Recently developed super-resolution methods that allow light microscopy to image subcellular structure and molecular localization on the 10s of nm scale have revolutionized neurobiology by allowing neuroscientists to study the inner workings of glia, axons, dendrites, and synapses in unprecedented detail that had previously only been possible using electron microscopy (EM). In particular, super-resolution fluorescence imaging has many advantages over EM including much easier sample preparation and staining procedures as well as the ability to be applied to not only fixed, but also living cells and tissues. Several different super-resolution fluorescence imaging methods have been developed, such as STimulated-Emission Depletion (STED) microscopy and the related methods of Stochastic Optical Reconstruction Microscopy (STORM) and Photo-activation Localization Microscopy (PALM). Each of these nanoscopy methods has advantages and limitations depending on the properties of the biological sample and fluorophores to be imaged. Thus, it is advantageous and even necessary to employ more than one of these different methods when investigating any given scientific question. Accordingly, the RMNDC Nanoscopy Core B will provide access to recently acquired instrumentation and technical support for NINDS-funded and other neuroscience investigators at the University of Colorado-Anschutz Medical Campus (UC-AMC) to perform state-of-the-art STED and STORM/PALM super-resolution imaging (Aim 1) and complementary Forster-resonance energy transfer (FRET)-based imaging (Aim 2).

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
United States
Zip Code
Sinnen, Brooke L; Bowen, Aaron B; Forte, Jeffrey S et al. (2017) Optogenetic Control of Synaptic Composition and Function. Neuron 93:646-660.e5
Soltys, John N; Meyer, Stephanie A; Schumann, Hannah et al. (2017) Determining the Spatial Relationship of Membrane-Bound Aquaporin-4 Autoantibodies by STED Nanoscopy. Biophys J 112:1692-1702
Goodell, Dayton J; Zaegel, Vincent; Coultrap, Steven J et al. (2017) DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific. Cell Rep 19:2231-2243
Moreno, Rosa L; Josey, Megan; Ribera, Angeles B (2017) Zebrafish In Situ Spinal Cord Preparation for Electrophysiological Recordings from Spinal Sensory and Motor Neurons. J Vis Exp :
Dittmer, Philip J; Wild, Angela R; Dell'Acqua, Mark L et al. (2017) STIM1 Ca2+ Sensor Control of L-type Ca2+-Channel-Dependent Dendritic Spine Structural Plasticity and Nuclear Signaling. Cell Rep 19:321-334
Gilmer, Jesse I; Person, Abigail L (2017) Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity. J Neurosci 37:12153-12166
Westacott, Matthew J; Ludin, Nurin W F; Benninger, Richard K P (2017) Spatially Organized ?-Cell Subpopulations Control Electrical Dynamics across Islets of Langerhans. Biophys J 113:1093-1108
Lam, Philip M; Carlsen, Jessica; González, Marco I (2017) A calpain inhibitor ameliorates seizure burden in an experimental model of temporal lobe epilepsy. Neurobiol Dis 102:1-10
McElroy, Pallavi B; Liang, Li-Ping; Day, Brian J et al. (2017) Scavenging reactive oxygen species inhibits status epilepticus-induced neuroinflammation. Exp Neurol 298:13-22
Westacott, Matthew J; Farnsworth, Nikki L; St Clair, Joshua R et al. (2017) Age-Dependent Decline in the Coordinated [Ca2+] and Insulin Secretory Dynamics in Human Pancreatic Islets. Diabetes 66:2436-2445

Showing the most recent 10 out of 118 publications