State-of-the-art MRI/MRS techniques are among the most powerful in vivo methods for imaging brain Structure and function. But adoption of MRI/MRS by neuroscientists working with in vivo animal models has been slow due to excessive entry costs of technology and expertise. Yale's Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center provides access and support to neuroscience PIs, at Yale and nearby institutions, for cross-disciplinary MR-based neuroscience studies. The resources include several high-field, both small and wide, horizontal-bore magnets as well as related resources for radio-frequency (RF) coil engineering, auxiliary facilities and technical support for complex surgeries and infusions, fully equipped biochemical and material science laboratories, several neurophysiological rigs to conduct in vivo electrical and optical studies, an advanced data processing facilities with distributed computing and archiving. The QNMR Core Center consists of four synergistic modules, each dedicated to improving effectiveness of ongoing research based upon cross-disciplinary neuroscience studies involving MRI (Core 1), MRS (Core 2), neurophysiology (Core 3), and data analysis (Core 4).
The aims for each Core are to (i) implement, maintain, and support the Core methods for neuroscience PIs;(ii) support new research initiatives using Core methods;(iii) train and provide mentorship for neuroscience PIs and their staff;(iv) integrate synergistic use of MR/neurophysiological measurements and Pl-specific data analysis;(v) implement new Core methods to support neuroscience PIs;and (vi) track Core activities and disseminate/share resources to NIH community. The overall goal of the QNMR Core Center is to enhance NINDS- and NIH-funded research through facilitating the use of neuroscientists of advanced MR and combined MR/electrical/optical methods and through dissemination of discoveries and improved methodologies to the NIH community at large.

Public Health Relevance

MRI/MRS with optical and electrical technologies, requiring sophisticated multi-modal data analysis tools, constitutes a unique window to reveal structure and function of the living brain. This cross-modal combination of cutting-edge technologies requires investments in resources/expertise not possible outside a centralized core center. The four proposed cores (MRI, MRS, neurophysiology, data analysis) serve as a unique centralized resource hub to neuroscientists advancing NIH-supported projects.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-B (38))
Program Officer
Talley, Edmund M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Shu, Christina Y; Herman, Peter; Coman, Daniel et al. (2016) Brain region and activity-dependent properties of M for calibrated fMRI. Neuroimage 125:848-56
Zhan, Qiong; Buchanan, Gordon F; Motelow, Joshua E et al. (2016) Impaired Serotonergic Brainstem Function during and after Seizures. J Neurosci 36:2711-22
Park, Kellie A; Ribic, Adema; Laage Gaupp, Fabian M et al. (2016) Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1. J Neurosci 36:7464-75
Hsieh, Lawrence S; Wen, John H; Claycomb, Kumiko et al. (2016) Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement. Nat Commun 7:11753
Coman, Daniel; Huang, Yuegao; Rao, Jyotsna U et al. (2016) Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas. NMR Biomed 29:309-19
Kaneko, Gen; Sanganahalli, Basavaraju G; Groman, Stephanie M et al. (2016) Hypofrontality and Posterior Hyperactivity in Early Schizophrenia: Imaging and Behavior in a Preclinical Model. Biol Psychiatry :
Pirazzoli, Valentina; Ayeni, Deborah; Meador, Catherine B et al. (2016) Afatinib plus Cetuximab Delays Resistance Compared to Single-Agent Erlotinib or Afatinib in Mouse Models of TKI-Naïve EGFR L858R-Induced Lung Adenocarcinoma. Clin Cancer Res 22:426-35
Shu, Christina Y; Sanganahalli, Basavaraju G; Coman, Daniel et al. (2016) Quantitative β mapping for calibrated fMRI. Neuroimage 126:219-28
Juchem, Christoph; de Graaf, Robin A (2016) The public multi-coil information (PUMCIN) policy. Magn Reson Med :
Hyder, Fahmeed; Herman, Peter; Bailey, Christopher J et al. (2016) Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis. J Cereb Blood Flow Metab 36:903-16

Showing the most recent 10 out of 124 publications