This proposal seeks to establish the Emory Neuroscience NINDS Core Facilities. Neuroscience research has grown dramatically at Emory, with dozens of new investigators receiving NINDS-funding in recent years. The research, based in more than 10 basic science and clinical departments, pursues key issues ranging from the cellular and molecular basis of neural function and mechanisms of neurological disease, to clinical trials of new therapies in stroke and other common diseases. The Emory Neuroscience NINDS Core Facilities will coordinate core activities for 37 NINDS-funded investigators and their 51 qualifying grants, to provide these investigators and other neuroscientists access to a variety of state-of-the-art technologies and approaches that will enhance collaborative, multidisciplinary research. The facility will leverage generous institutional support for personnel, equipment, space and the new Center for Neurodegenerative Disease, to develop or expand the following shared core facilities: a) Proteomics b) Imaging c) Neuropathology/Histochemistry d) Viral Vector and e) Genomics. As directors, Drs. Allan Levey and Ray Dingledine will provide outstanding administrative support for the Center by a) facilitating, coordinating and monitoring access to the cores;b) assisting with budgeting, reporting, and maintaining fiscal responsibility;and c) providing an environment that fosters collaborative research utilizing cutting edge technologies and multidisciplinary approaches. A steering committee comprised of the Directors of the Center and the leaders of the respective Cores will meet at least once every 6 months to assure fair access, provide oversight of the operations of the cores, and to establish priorities and resolves issues. Neurological disorders are major causes of morbidity and mortality. The cores described in this application will facilitate a broad range of NINDS-sponsored research at Emory that is aimed at improving the understanding of disease, and producing new diagnostic approaches, therapies, and prevention.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS055077-04
Application #
8374446
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
4
Fiscal Year
2012
Total Cost
$140,760
Indirect Cost
$49,946
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Boros, Benjamin D; Greathouse, Kelsey M; Gentry, Erik G et al. (2017) Dendritic spines provide cognitive resilience against Alzheimer's disease. Ann Neurol 82:602-614
Ivanova, Tamara N; Gross, Christina; Mappus, Rudolph C et al. (2017) Familiarity with a vocal category biases the compartmental expression of Arc/Arg3.1 in core auditory cortex. Learn Mem 24:612-621
Zimmermann, Kelsey S; Yamin, John A; Rainnie, Donald G et al. (2017) Connections of the Mouse Orbitofrontal Cortex and Regulation of Goal-Directed Action Selection by Brain-Derived Neurotrophic Factor. Biol Psychiatry 81:366-377
Eidson, Lori N; Inoue, Kiyoshi; Young, Larry J et al. (2017) Toll-like Receptor 4 Mediates Morphine-Induced Neuroinflammation and Tolerance via Soluble Tumor Necrosis Factor Signaling. Neuropsychopharmacology 42:661-670
Yang, Su; Yang, Huiming; Chang, Renbao et al. (2017) MANF regulates hypothalamic control of food intake and body weight. Nat Commun 8:579
Francis, Joshua W; Newman, Laura E; Cunningham, Leslie A et al. (2017) A Trimer Consisting of the Tubulin-specific Chaperone D (TBCD), Regulatory GTPase ARL2, and ?-Tubulin Is Required for Maintaining the Microtubule Network. J Biol Chem 292:4336-4349
Rorabaugh, Jacki M; Chalermpalanupap, Termpanit; Botz-Zapp, Christian A et al. (2017) Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer's disease. Brain 140:3023-3038
Christopher, Michael A; Myrick, Dexter A; Barwick, Benjamin G et al. (2017) LSD1 protects against hippocampal and cortical neurodegeneration. Nat Commun 8:805
Sharp, W G; Allen, A G; Stubbs, K H et al. (2017) Successful pharmacotherapy for the treatment of severe feeding aversion with mechanistic insights from cross-species neuronal remodeling. Transl Psychiatry 7:e1157
Kumar, Sandeep; Kang, Dong-Won; Rezvan, Amir et al. (2017) Accelerated atherosclerosis development in C57Bl6 mice by overexpressing AAV-mediated PCSK9 and partial carotid ligation. Lab Invest 97:935-945

Showing the most recent 10 out of 225 publications