We propose to establish a Neuroscience Imaging Center at OHSU that will provide state-of-the-art instrumentation for electron, fluorescent, and confocal microscopy as well as expertise in designing and analyzing imaging experiments. The Neuroscience Imaging Center will have 3 cores: 1) a Live-cell Imaging Core, 2) a Confocal Core, and 3) an EM Core. The major instrumentation and expertise necessary for establishing these cores exist already at OHSU. However, the lack of fully staffed cores for these microscopes prevents efficient and reliable use of these instruments by NINDS investigators. The Neuroscience Imaging Center will provide the dedicated staff for these microscopes to enhance and facilitate the research by NINDS investigators at OHSU. An advisory committee, aided by an administrative core, will oversee the operations of the Center, review and optimize the effectiveness of the component cores, and manage the fiscal aspects of the Center. The three cores will function together as a truly integrated facility from experimental design, to performance, to data analysis. Instrumentation resources will be located on both the West and Marquam Hill campuses, thereby serving the entire OHSU neuroscience community. Drs. Sue Aicher and Gary Banker will serve as co-Directors of the Center;each Director brings unique scientific and technical qualifications and experience in managing shared facilities. The Center Directors will provide front-end consultation with the investigators, refining experimental questions and formulating optimal technical approaches for individual experiments. Three Core Managers and technical staff will operate the major instrumentation, train new users, and provide full service experiments for some investigators. Training opportunities will be available to serve principal investigators, postdoctoral fellows, and graduate students. Neuroscience is the centerpiece of research at OHSU;the Imaging Center will bring cutting-edge imaging to the 23 NINDS-funded research programs identified in this proposal, as well as our NINDS-funded trainees. The Neuroscience Imaging Center will catalyze focused interactions within our entire neuroscience community.

Public Health Relevance

The development of a Neuroscience Imaging Center will facilitate the projects of many OHSU scientists working on a wide range of topics relevant to neurological disorders. A further understanding of normal and pathological brain function through basic science will advance the NIH mission to enhance public health.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Talley, Edmund M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Schools of Medicine
United States
Zip Code
Spinelli, Kateri J; Taylor, Jonathan K; Osterberg, Valerie R et al. (2014) Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson's disease. J Neurosci 34:2037-50
Dürr, Katharina L; Chen, Lei; Stein, Richard A et al. (2014) Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 158:778-92
Dufour, Brett D; Smith, Catherine A; Clark, Randall L et al. (2014) Intrajugular vein delivery of AAV9-RNAi prevents neuropathological changes and weight loss in Huntington's disease mice. Mol Ther 22:797-810
Schnell, Eric; Long, Thomas H; Bensen, Aesoon L et al. (2014) Neuroligin-1 knockdown reduces survival of adult-generated newborn hippocampal neurons. Front Neurosci 8:71
Cassaglia, Priscila A; Shi, Zhigang; Li, Baoxin et al. (2014) Neuropeptide Y acts in the paraventricular nucleus to suppress sympathetic nerve activity and its baroreflex regulation. J Physiol 592:1655-75
McClendon, Evelyn; Chen, Kevin; Gong, Xi et al. (2014) Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol 75:508-24
Topaloglu, A Kemal; Lomniczi, Alejandro; Kretzschmar, Doris et al. (2014) Loss-of-function mutations in PNPLA6 encoding neuropathy target esterase underlie pubertal failure and neurological deficits in Gordon Holmes syndrome. J Clin Endocrinol Metab 99:E2067-75
Villasana, L E; Westbrook, G L; Schnell, E (2014) Neurologic impairment following closed head injury predicts post-traumatic neurogenesis. Exp Neurol 261:156-62
Vaaga, Christopher E; Borisovska, Maria; Westbrook, Gary L (2014) Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr Opin Neurobiol 29:25-32
Cleary, D R; Roeder, Z; Elkhatib, R et al. (2014) Neuropeptide Y in the rostral ventromedial medulla reverses inflammatory and nerve injury hyperalgesia in rats via non-selective excitation of local neurons. Neuroscience 271:149-59

Showing the most recent 10 out of 50 publications