This proposal seeks to establish essential core research facilities to meet the following identified shared needs of the Stanford Neuroscience research community: (1) gene vector and virus production, (2) advanced microscopy data acquisition and analysis, and (3) automated behavioral phenotyping. Viral vectors are used to express recombinant proteins and/or knock down expression of endogenous proteins in specific subsets of cells in brain tissue. It is even possible to express proteins that enable precise temporal control over the activity of individual neurons. Use of such viral tools is revolutionizing neuroscience research. A centralized core facility will vastly improve the efficiency and cost-effectiveness of virus production. Three dimensional image analysis and visualization are essential for quantifying information from volume imaging techniques, such as Array Tomography, and single- and two-photon confocal microscopy. Software and hardware for this type of analysis is expensive, and has a steep learning curve. This proposal will fund the Image Analysis Center, a central resource with technical expertise to assist scientists with image analysis problems, and an electrophysiological recording setup for an existing shared two-photon tissue slice rig. Standardized, replicable behavioral tests are critical to translating progress from basic neuroscience research to treatments relevant to human disease. Automated behavioral phenotyping can provide more consistent results by eliminating stress due to removal from the home cage and novelty effects from the test environment. Automated testing can also Improve throughput and reduce costs. This proposal will provide funds to expand capacity for automated behavioral testing in an existing core facility. These core facilities will be a central part of SINTN's effort to advance our understanding of normal brain and spinal cord function at the molecular, cellular, and neural circuit level, and to elucidate the pathological processes underlying malfunction of the nervous system following injury or neurologic and psychiatric diseases. Creating core services to meet these shared research needs will foster efficiency and productivity by minimizing the unnecessary duplication of equipment and creating a centralized source of expertise for shared tasks with the net effect of better solutions in less time. Moreover, the resulting formal and informal collaborations will provide the foundation for a richer, stronger, and more vibrant research community.

Public Health Relevance

This proposal will establish core research facilities for use by Stanford Neuroscience faculty. These facilities will enable researchers to more rapidly assess the functions of specific proteins involved in brain disease, brain development, or recovery from brain injury, and provide the means to assess functional changes in individual neuronal cells, in circuits made from groups of cells, and in the behavior of laboratory animals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
1P30NS069375-01A1
Application #
8018329
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Talley, Edmund M
Project Start
2011-03-01
Project End
2015-11-30
Budget Start
2011-03-01
Budget End
2011-11-30
Support Year
1
Fiscal Year
2011
Total Cost
$772,554
Indirect Cost
Name
Stanford University
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Szabo, Gergely G; Du, Xi; Oijala, Mikko et al. (2017) Extended Interneuronal Network of the Dentate Gyrus. Cell Rep 20:1262-1268
Liu, Qing; Jiang, Chao; Xu, Jin et al. (2017) Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs. Circ Res 121:376-391
Harterink, Martin; da Silva, Marta Esteves; Will, Lena et al. (2017) DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells. Nat Methods 14:479-482
Becker, Lindsay A; Huang, Brenda; Bieri, Gregor et al. (2017) Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544:367-371
Ardestani, Pooneh Memar; Evans, Andrew K; Yi, Bitna et al. (2017) Modulation of neuroinflammation and pathology in the 5XFAD mouse model of Alzheimer's disease using a biased and selective beta-1 adrenergic receptor partial agonist. Neuropharmacology 116:371-386
Si, Peng; Sen, Debasish; Dutta, Rebecca et al. (2017) In Vivo Molecular Optical Coherence Tomography of Lymphatic Vessel Endothelial Hyaluronan Receptors. Sci Rep 7:1086
Liba, Orly; Lew, Matthew D; SoRelle, Elliott D et al. (2017) Speckle-modulating optical coherence tomography in living mice and humans. Nat Commun 8:15845
Yi, Bitna; Sahn, James J; Ardestani, Pooneh Memar et al. (2017) Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer's disease. J Neurochem 140:561-575
Chamberland, Simon; Yang, Helen H; Pan, Michael M et al. (2017) Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. Elife 6:
Gulati, Srishti; Cao, Vania Y; Otte, Stephani (2017) Multi-layer Cortical Ca2+ Imaging in Freely Moving Mice with Prism Probes and Miniaturized Fluorescence Microscopy. J Vis Exp :

Showing the most recent 10 out of 81 publications