In recent years there has been an increase in the generation of transgenic and knockout mouse lines as well as viral delivery of genes. These new genetic manipulations have revolutionized our understanding of the biological function of cellular and molecular processes in both normal and disease state of central nervous system ^^?^^. The large numberof mouse models calls for rigorous, sensitive, and reproducible investigations of behavioral phenotypes of mutant mice lines ^^ ^?, as well as pharmacological efficacy studies. Behavioral testing paradigms should be easily transferable and replicable between laboratories. Many of the standard behavioral tests used today are not easily reproduced between laboratories, due either to variation in the genetic background of mice ^^'^?, or to variations in environmental or experimental conditions ^^'^^. Other confounding factors can include variations in animal handling, housing, transportation, and test conditions ^^?^^? ^. Behavioral models used for phenotyping of mice are designed based on the models that have been designed for rats as the test subjects ^^. Often these classical tests do not satisfactorily transfer over to mice. Additionally, these standard tests introduce many outside variables such as the effects of environment and human handling ^ forced isolation, interruption of sleep/wake cycle, and placement in unnatural, stressful environments. In order to minimize these experimental and environmental variables, we will establish an Automated Behavioral Core to monitor and record mouse behavior in the home cage environment. These novel tests have the benefit of decreasing variability and increasing reproducibility of behavioral outcome between experimental repeats ^^""""""""^?. By using these new technologies we are aiming to 1) reduce novelty factors inherent in many classical tests by performing the behavioral testing inside the home cage ^^;2) test the Individual animals while they remain in social groups (Intellicage) or when they are individually housed (PhenoLab);3) reduce the stress related to the handling and experimental condition;4) perform the data acquisition using computer software in an independent and unbiased manner;and 5) conduct the experiments with higher throughput during the animals active cycle without human interruption.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS069375-02
Application #
8377906
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
2
Fiscal Year
2012
Total Cost
$351,221
Indirect Cost
$141,516
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Szabo, Gergely G; Du, Xi; Oijala, Mikko et al. (2017) Extended Interneuronal Network of the Dentate Gyrus. Cell Rep 20:1262-1268
Liu, Qing; Jiang, Chao; Xu, Jin et al. (2017) Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs. Circ Res 121:376-391
Harterink, Martin; da Silva, Marta Esteves; Will, Lena et al. (2017) DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells. Nat Methods 14:479-482
Becker, Lindsay A; Huang, Brenda; Bieri, Gregor et al. (2017) Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544:367-371
Ardestani, Pooneh Memar; Evans, Andrew K; Yi, Bitna et al. (2017) Modulation of neuroinflammation and pathology in the 5XFAD mouse model of Alzheimer's disease using a biased and selective beta-1 adrenergic receptor partial agonist. Neuropharmacology 116:371-386
Si, Peng; Sen, Debasish; Dutta, Rebecca et al. (2017) In Vivo Molecular Optical Coherence Tomography of Lymphatic Vessel Endothelial Hyaluronan Receptors. Sci Rep 7:1086
Liba, Orly; Lew, Matthew D; SoRelle, Elliott D et al. (2017) Speckle-modulating optical coherence tomography in living mice and humans. Nat Commun 8:15845
Yi, Bitna; Sahn, James J; Ardestani, Pooneh Memar et al. (2017) Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer's disease. J Neurochem 140:561-575
Chamberland, Simon; Yang, Helen H; Pan, Michael M et al. (2017) Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. Elife 6:
Gulati, Srishti; Cao, Vania Y; Otte, Stephani (2017) Multi-layer Cortical Ca2+ Imaging in Freely Moving Mice with Prism Probes and Miniaturized Fluorescence Microscopy. J Vis Exp :

Showing the most recent 10 out of 81 publications