Gene Vector and Virus Core (GWC) Over the last decade, the use of viral vectors has emerged as a powerful approach to express proteins for manipulating and dissecting neuronal function. For example it is possible, using a single virus particle, to reduce expression of specific proteins by expressing short hairpin RNAs (shRNAs) and to replace them with shRNA-resistant versions or other proteins in specific cells. It is also possible to use viruses to express proteins that enable precise, light-activated control over the electrical activity of individual nerve cells (e.g., channel rhodopsins). These virally-mediated molecular manipulators allow unprecedented experimental control over synapses, cells, and circuits in model systems, as well as in vivo in the mammalian brain. These two powerful complementary approaches are applicable to virtually all topics encompassed by modern neuroscience research ranging from the study of the detailed molecular mechanisms underlying brain development to the neural circuit mechanisms that underlie sensory perception and complex behaviors. They can also be applied to studies aimed at elucidating the pathophysiological processes underlying all brain disorders including neurodevelopmental disorders such as autism, neurodegenerative disorders such as Alzheimer's or Parkinson's disease, and psychiatric disorders such as depression and schizophrenia. To cite just a few examples, viral vectors have been used to examine the molecular mechanisms underlying addiction and depression (2-4);to study the role of specific proteins in synaptic plasticity and learning and memory(5-7);to explore the molecular regulation of growth cone dynamics (8);and to examine the mechanisms of experiencedependent plasticity of primary sensory cortex (9). The most exciting recent advance that takes advantage of viral vectors is the development of """"""""optogenetics"""""""" by Karl Deisseroth, a member of SINTN (10). This new technology involves the expression via viral vectors of proteins that, when activated by light, can increase or decrease individual neuronal activity in a temporally and spatially precise manner. Viral vectors expressing light-activated proteins have been used by Stanford researchers to probe the role of hypocretin-expressing neurons in the hypothalamus in sleep-awake transitions (11) to delineate the neural circuit mechanisms that underlie the therapeutic efficacy of deep brain stimulation in Parkinson's disease (12), and to map the spatial distribution of synaptic inputs to cells in defined layers of primary sensory cortex (13) . Most recently, it has allowed expression of light-activated G-protein coupled receptors in the nucleus accumbens to explore how temporally precise control of intracellular signaling influences spike firing and behavior (14). These powerful optogenetic tools depend on the use of viral vectors and are applicable to a wide range of invertebrate and mammalian species.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Szabo, Gergely G; Du, Xi; Oijala, Mikko et al. (2017) Extended Interneuronal Network of the Dentate Gyrus. Cell Rep 20:1262-1268
Liu, Qing; Jiang, Chao; Xu, Jin et al. (2017) Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs. Circ Res 121:376-391
Harterink, Martin; da Silva, Marta Esteves; Will, Lena et al. (2017) DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells. Nat Methods 14:479-482
Becker, Lindsay A; Huang, Brenda; Bieri, Gregor et al. (2017) Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544:367-371
Ardestani, Pooneh Memar; Evans, Andrew K; Yi, Bitna et al. (2017) Modulation of neuroinflammation and pathology in the 5XFAD mouse model of Alzheimer's disease using a biased and selective beta-1 adrenergic receptor partial agonist. Neuropharmacology 116:371-386
Si, Peng; Sen, Debasish; Dutta, Rebecca et al. (2017) In Vivo Molecular Optical Coherence Tomography of Lymphatic Vessel Endothelial Hyaluronan Receptors. Sci Rep 7:1086
Liba, Orly; Lew, Matthew D; SoRelle, Elliott D et al. (2017) Speckle-modulating optical coherence tomography in living mice and humans. Nat Commun 8:15845
Yi, Bitna; Sahn, James J; Ardestani, Pooneh Memar et al. (2017) Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer's disease. J Neurochem 140:561-575
Chamberland, Simon; Yang, Helen H; Pan, Michael M et al. (2017) Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. Elife 6:
Gulati, Srishti; Cao, Vania Y; Otte, Stephani (2017) Multi-layer Cortical Ca2+ Imaging in Freely Moving Mice with Prism Probes and Miniaturized Fluorescence Microscopy. J Vis Exp :

Showing the most recent 10 out of 81 publications