In this Institutional Center Core Grant to Support Neuroscience Research, we propose to establish an innovative Neural Imaging Center composed of four Core facilities that will serve NINDS-funded Harvard Medical School (HMS) and Children's Hospital Boston (CHB) investigators. These state-of-the-art facilities will provide important new resources to the HMS and CHB neuroscience community, and will perform essential services that are difficult and impractical for individual laboratories to provide on ther own. The Imaging Center will be composed of an Administrative Core, a High-Content Cellular Imaging Core, an immunohistochemistry-based Array Tomography Core, and a Super-resolution Imaging Core. The experimental opportunities and innovative services provided by the Imaging Center will give area neuroscientists access to unique equipment and training in several new cutting-edge methodologies, greatly benefiting the research programs of NINDS-funded investigators at these institutions. Moreover, the Center will function as the centerpiece of a concerted effort to strengthen ties between the neuroscience communities at HMS and CHB. Thus, a major focus of this Center will be to serve as a nexus for collaborative interactions. To this end, we propose not only to establish a set of core facilities, but also to adopt several strategies that reduce the barriers to their widespread utilization, including provisions for informal education regarding core methodologies and significant technical support. Through the development of this Center, we hope to shift from a complete reliance on individual laboratory-centered research to a more cost-effective and productive use of extraordinary cores while further deepening existing ties between these two vibrant neuroscience communities.

Public Health Relevance

We propose to establish a Neural Imaging Center to serve NINDS-funded Harvard Medical School and Children's Hospital Boston investigators. These facilities will provide important new resources and perform essential services that are difficult and impractical for individual laboratories to perform on their own, thereby accelerating the pace of neuroscience research at these institutions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS072030-05
Application #
8919464
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Talley, Edmund M
Project Start
2011-09-30
Project End
2016-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
5
Fiscal Year
2015
Total Cost
$773,857
Indirect Cost
$317,304
Name
Harvard Medical School
Department
Biology
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Cheadle, Lucas; Tzeng, Christopher P; Kalish, Brian T et al. (2018) Visual Experience-Dependent Expression of Fn14 Is Required for Retinogeniculate Refinement. Neuron 99:525-539.e10
Hrvatin, Sinisa; Hochbaum, Daniel R; Nagy, M Aurel et al. (2018) Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat Neurosci 21:120-129
Renthal, William; Boxer, Lisa D; Hrvatin, Sinisa et al. (2018) Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing. Nat Neurosci 21:1670-1679
Sieker, Jakob T; Proffen, Benedikt L; Waller, Kimberly A et al. (2018) Transcriptional profiling of synovium in a porcine model of early post-traumatic osteoarthritis. J Orthop Res :
Wong, Man Yan; Liu, Changliang; Wang, Shan Shan H et al. (2018) Liprin-?3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses. Proc Natl Acad Sci U S A 115:2234-2239
de Jong, Arthur P H; Roggero, Carlos M; Ho, Meng-Ru et al. (2018) RIM C2B Domains Target Presynaptic Active Zone Functions to PIP2-Containing Membranes. Neuron 98:335-349.e7
Liu, Changliang; Kershberg, Lauren; Wang, Jiexin et al. (2018) Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell 172:706-718.e15
Martínez-François, Juan Ramón; Fernández-Agüera, María Carmen; Nathwani, Nidhi et al. (2018) BAD and KATP channels regulate neuron excitability and epileptiform activity. Elife 7:
Chantre, Christophe O; Campbell, Patrick H; Golecki, Holly M et al. (2018) Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model. Biomaterials 166:96-108
Jeanne, James M; Fi?ek, Mehmet; Wilson, Rachel I (2018) The Organization of Projections from Olfactory Glomeruli onto Higher-Order Neurons. Neuron 98:1198-1213.e6

Showing the most recent 10 out of 68 publications