The Neuroscience Center Behavior Core will establish a centralized resource for the analysis of animal behavior. The objectives of this core resource will be to provide uniform behavioral analysis of rodents employing a variety of behavioral platforms appropriate for the research needs of Salk Institute Neuroscience Center faculty and to provide expertise for the interpretation of results. Behavioral studies are an important component of modern neuroscience research. For example, careful analysis of changes in rat behavior in the radial water maze showed that the ability to learn new tasks decreases with age. These changes were eventually found to be reflected at the cellular level, in particular, in the dentate gyrus of the hippocampus where aging is associated with a reduction in the number of axons in the medial perforant path, as well as the density of synaptic contacts impinging on granule cells. Subsequently this reduction in the input to the hippocampus was found accompanied by a decrease in synaptic plasticity, longterm potentiation has a higher threshold and lasts for a shorter time in aged animals, and there is an agedependent decrease in NMDA receptor-mediated responses - all discoveries stemming from the initial analysis of animal behavior.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Salk Institute for Biological Studies
La Jolla
United States
Zip Code
Wen, Jessica H; Vincent, Ludovic G; Fuhrmann, Alexander et al. (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979-87
Firth, Amy L; Dargitz, Carl T; Qualls, Susan J et al. (2014) Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 111:E1723-30
Vilar, Marçal; Sung, Tsung-Chang; Chen, Zhijiang et al. (2014) Heterodimerization of p45-p75 modulates p75 signaling: structural basis and mechanism of action. PLoS Biol 12:e1001918
Seidel, Shannon; Bruce, James; Leblanc, Mathias et al. (2013) ZASC1 knockout mice exhibit an early bone marrow-specific defect in murine leukemia virus replication. Virol J 10:130
Chien, Yuan-Hung; Werner, Michael E; Stubbs, Jennifer et al. (2013) Bbof1 is required to maintain cilia orientation. Development 140:3468-77
Sung, Tsung-Chang; Chen, Zhijiang; Thuret, Sandrine et al. (2013) P45 forms a complex with FADD and promotes neuronal cell survival following spinal cord injury. PLoS One 8:e69286