Facilities and Services. This Core is designed to address the 2 fundamental, but advanced technology needs of neuroscience investigators working with NHPs: 1) specialized mechanical and electronic equipment design and repair;and 2) data collection, management, analysis and storage. A further, critical function of this Core is System Administration, i.e., the maintenance of the computer networks that link computers within and between labs. A key task for this core will be to develop an enlarged database structure to accommodate all types of experimental data, including neurophysiological, anatomical and imaging results. The initial approach to this problem will use database techniques based on open-source PostgreSQL. As a consequence, the database will be compatible with ongoing efforts in the computational neuroscience community (INCF- brain atlases, PANDORA, XooNlps ). Not only will this facilitate sharing programs and data between investigators, but users will have the opportunity to employ a wide range of open source analysis tools on their data. By organizing data in this way, the Core will facilitate communication and interaction with expert consultants who will be able to access the data in a straightforward manner. The Core will have an advanced shop and trained staff who will assist in design, maintenance and repair of specialized mechanical, electronic and computer equipment (e.g., primate chairs, reward-delivery mechanisms, power-conditioning devices, etc.).

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-R)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Jin, Tao; Mehrens, Hunter; Wang, Ping et al. (2016) Glucose metabolism-weighted imaging with chemical exchange-sensitive MRI of 2-deoxyglucose (2DG) in brain: Sensitivity and biological sources. Neuroimage 143:82-90
Schwartz, Andrew B (2016) Movement: How the Brain Communicates with the World. Cell 164:1122-35
Ohbayashi, Machiko; Picard, Nathalie; Strick, Peter L (2016) Inactivation of the Dorsal Premotor Area Disrupts Internally Generated, But Not Visually Guided, Sequential Movements. J Neurosci 36:1971-6
Dum, Richard P; Levinthal, David J; Strick, Peter L (2016) Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proc Natl Acad Sci U S A 113:9922-7
Degenhart, Alan D; Eles, James; Dum, Richard et al. (2016) Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J Neural Eng 13:046019
Shakkottai, Vikram G; Batla, Amit; Bhatia, Kailash et al. (2016) Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. Cerebellum :
Golub, Matthew D; Chase, Steven M; Batista, Aaron P et al. (2016) Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control. Curr Opin Neurobiol 37:53-8
Pasquereau, Benjamin; DeLong, Mahlon R; Turner, Robert S (2016) Primary motor cortex of the parkinsonian monkey: altered encoding of active movement. Brain 139:127-43
Zimnik, Andrew J; Nora, Gerald J; Desmurget, Michel et al. (2015) Movement-related discharge in the macaque globus pallidus during high-frequency stimulation of the subthalamic nucleus. J Neurosci 35:3978-89
Kozai, Takashi D Y; Catt, Kasey; Li, Xia et al. (2015) Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials 37:25-39

Showing the most recent 10 out of 28 publications