1. HIGH AND ULTRAHIGH FIELD IMAGE ACQUISITION AND ENGINEERING PI: Pierre-Francois van de Moortlele, PhD Core Aims The long-term goal of this core is to provide the means to enhance, broaden and accelerate a large array of ambitious neuroscience research projects that are increasingly utilizing high (3 and 4T) and ultrahigh (7T and above) field MR Imaging instruments and novel image acquisition and reconstruction techniques to investigate brain structure and function. Multiple studies have now amply demonstrated that MRI at higher magnetic fields can provide significant advantages in signal-to-noise ratio (SNR), spatial resolution, anatomical delineation, and anatomical and functional contrast. When combined with the appropriate imaging methods, these gains can be transformative in basic and translational neuroscience projects. However, access to such advanced capabilities by neuroscience researchers is virtually impossible outside the context of a collaborative and multidisciplinary relationship, especially (but not only) when instrumentation at the cutting-edge of the field, such as those operating at high (HF) and ultrahigh fields (UHF), and advanced, asof- yet commercially unavailable imaging methods are employed.
The aim of this core is to provide the necessary support and infrastructure that will allow a large community of NINDS funded investigators to utilize advanced imaging methodologies and instrumentation in CMRR where there exists a large parallel effort (funded by other sources) on instrumentation and methodology development.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-R)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
United States
Zip Code
Powell, Nathaniel J; Jang, Albert; Park, Jang-Yeon et al. (2015) Gradient rotating outer volume excitation (GROOVE): A novel method for single-shot two-dimensional outer volume suppression. Magn Reson Med 73:139-49
Liu, Jiaen; Zhang, Xiaotong; Schmitter, Sebastian et al. (2015) Gradient-based electrical properties tomography (gEPT): A robust method for mapping electrical properties of biological tissues in vivo using magnetic resonance imaging. Magn Reson Med 74:634-46
Deelchand, Dinesh K; Adanyeguh, Isaac M; Emir, Uzay E et al. (2015) Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single-voxel MRS at 3T. Magn Reson Med 73:1718-25
Deelchand, Dinesh Kumar; Henry, Pierre-Gilles; Marja?ska, Ma?gorzata (2015) Effect of carr-purcell refocusing pulse trains on transverse relaxation times of metabolites in rat brain at 9.4 Tesla. Magn Reson Med 73:13-20
Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J et al. (2014) Seven-tesla time-of-flight angiography using a 16-channel parallel transmit system with power-constrained 3-dimensional spoke radiofrequency pulse design. Invest Radiol 49:314-25
Malone, Stephen M; Luciana, Monica; Wilson, Sylia et al. (2014) Adolescent drinking and motivated decision-making: a cotwin-control investigation with monozygotic twins. Behav Genet 44:407-18
Armbrust, Karen R; Wang, Xinming; Hathorn, Tyisha J et al. (2014) Mutant ?-III spectrin causes mGluR1? mislocalization and functional deficits in a mouse model of spinocerebellar ataxia type 5. J Neurosci 34:9891-904
Ugurbil, Kamil (2014) Magnetic resonance imaging at ultrahigh fields. IEEE Trans Biomed Eng 61:1364-79
Mannion, Damien J; Kersten, Daniel J; Olman, Cheryl A (2014) Regions of mid-level human visual cortex sensitive to the global coherence of local image patches. J Cogn Neurosci 26:1764-74
Santoro, Roberta; Moerel, Michelle; De Martino, Federico et al. (2014) Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex. PLoS Comput Biol 10:e1003412

Showing the most recent 10 out of 27 publications